Technical Report

NetApp Al Control Plane

Pairing Popular Open-Source Tools with
NetApp to Enable Al, ML, and DL Data and
Experiment Management

Mike Oglesby, NetApp
October 2020 | TR-4798

Abstract

As organizations increase their use of artificial intelligence (Al), they face many challenges,
including workload scalability and data availability. This document demonstrates how to
address these challenges through the use of NetApp® Al Control Plane, a solution that pairs
NetApp data management capabilities with popular open-source tools and frameworks that
are used by data scientists and data engineers. In this document, we show you how to
rapidly clone a data namespace just as you would a Git repo. We demonstrate how to define
and implement Al training workflows that incorporate the near-instant creation of data and
model baselines for traceability and versioning. We also show how to seamlessly replicate
data across sites and regions and swiftly provision Jupyter Notebook workspaces with
access to massive datasets.

i NetApp-

TABLE OF CONTENTS

1

2

TN e Yo [0 To3 {01 o P SRS 5
ConCePts aNd COMPONENTS ..ciiiiiiiiiie ettt e et et e e e e e s e bt e et e et e e e e e aaanbeeeeeeaaessannbeseeeaaeesaannrees 6
P R N4 () ot T [1= o T=T oo TR PPRPPPRTPRIR 6
FZ A O] o r=Y] 1T £ PO PPRR TR 6
2.3 KUDBINEIES. ...ttt e e oo h e e e e et oo e e e s e Rt e e et e e n e e e e e e e e e e e e e s 7
P (=1 7Y o] o T I o (=T o | TR PPPPPRTPRR 7
2.5 NVIDIA DEEPOPS ..t 7
2.8 KUBETIOW ...ttt e et e et e e Rt e e et n e e e e e n e e e e eas 7
A A o - ol L= N 41 [0 PRSP PPRTPIR 8
2.8 NEEADPD ONTAP Ottt e et e et s e en e 8
2.9 NELAPD SNAPSNOL COPIES. ... iieiiiiiiee ettt ettt e e e e ettt e e e e e e s e bbbt e e e e e e e s e b abeeeeeaeeaaasnbbeeeeeeeaaannbbneeaaeeaaanrnes 9
2.10 NetApp FIEXCIONE TECNNOIOQYeetiieiiiiiiiiii ettt e e e e et e e e e e e et b et e e e e e e e ansbaneeaaeeaan 10
2.11 NetApp SnapMirror Data Replication TECHNOIOQYccccoiiiiiiiiiiiii e 11
2.12 NELAPP ClOUA SYNC....eiiiiiiiieii ittt ettt e e oo e e bbbttt e e e e e s a b bttt e e e e e e aa bbbt e et e e e e e e snbbeeeeaeeeaannbbaneaaaeaaan 12
2.13 NEEADPP XCP..... ettt e et e ettt 12
2.14 NetApp ONTAP FIEXGIOUP VOIUMESouiiiiiieei ittt e e e e e e et e e e e e e e e anabbe e e e e e e e e ansbeeeeaaeeaan 12
Hardware and Software REQUITEMENTS.......coiuiiii ittt 13
YU o] ¢ T] o AP P O PP RRTPTRPI 14
KUDEIrNEteS DEPIOYMENT ..ottt e e e e ettt e e e e e s e bbb e e e e e e e e e annbnbeeeeaas 14
oI R o (=T (=0 [L] 1 (= PRSP OUPRT 14
5.2 Use NVIDIA DeepOps to Install and Configure KUDEIMELEScooiiiiiiiiiiiieiiiee e 15
NetApp Trident Deployment and Configurationccceeiiiiiiiiiiiic e 15
B.1 PrEIEOUISITESeiiieiteitet ettt ettt ettt b ekt b ekt e bt ekt e bt e ek e e e b et ek et e be e ek et e be e e ket e ne e et e e e b et e ne s 15
6.2 INSEAII THIOENT ...ttt etttk b ekt e b et ekt e bt e ek et e be e e ke e e bt e et e e e ne e e beeenee s 15
6.3 Example Trident Backends for ONTAP Al DEPIOYMENTSueeiiiiiiiiiiiiiie ittt 16
6.4 Example Kubernetes StorageClasses for ONTAP Al DePlOYMENES........ccoiuiiieiiiieeiniiiie e eniee et 18
KUDETIOW DEPIOYIMENT ...ttt e e e ettt e e e e e s e abe et e e e e e e e annbnreeeeaas 19
A R o (=T (=T o (U] (=T O ST PO TP OPPPPP 19
7.2 Set Default KUDErNEetes StOragECIASSccciiiiiiiiiiiieiiiee ittt e st e et e e 20
7.3 Use NVIDIA DeepOps to Deploy KUDEFIOWccoiiiiiiiiiie e 20
Example Kubeflow Operations and TASKSc.coiuiiiiiieriieiee et 24
8.1 Provision a Jupyter Notebook Workspace for Data Scientist or Developer USeccccevviiiviiniiiieeennnnnn 25

NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

8.2 Create a Snapshot of an ONTAP Volume from Within a Jupyter NotebooK.............cccooiiiiiiiiiiiiiiiieee 31

8.3 Trigger a Cloud Sync Replication Update from Within a Jupyter NotebooKcccoiiiiiiiiiiiniiieee 35

8.4 Create a Kubeflow Pipeline to Execute an End-to-End Al Training Workflow with Built-in Traceability and
RV Z=1 5= oo 11 o PSR UPUPRTP 40
8.5 Create a Kubeflow Pipeline to Rapidly Clone a Dataset for a Data Scientist Workspacecccccceeeeeenn. 54
8.6 Create a Kubeflow Pipeline to Trigger a SnapMirror Volume Replication Update.............cccceevviieennineeennnen. 61
8.7 Create a Kubeflow Pipeline to Trigger a Cloud Sync Replication Updateccooeeiiiiiiiiiiieeeeniiieieeee e 62
9 Apache AIrfloOW DEPIOYMENTottt st e e st b e e s saba e e e s sabaeee e 64
LS A o 1T (=T [1S (= SRR 64
S 011 =11 = o PO TR POPRRP 64
9.3 Set Default KUDEINEees StOragECIASSeciiiriieiiiiiieiiieie ittt e e e e s e e nnneas 64
9.4 Use Helm to Deploy AIMIOWe ittt e e e e ettt e e e e e e et e e e e e e e e e snsrneeeeaaeaan 64
10 Example Apache AIrflow WOTKFIOWSoiiiiiiiiiie e 67
10.1 Implement an End-to-End Al Training Workflow with Built-in Traceability and Versioning.............cccccevunee 67
10.2 Rapidly Clone a Dataset to create a Data ScientiSt WOIKSPACE..........ccuieiiiiiiiiiiieei i 72
10.3 Trigger a SnapMirror Volume Replication UPAate..............ueiiiiiiiiiiiiii et 76
10.4 Trigger a Cloud Sync Replication UPAALEuiiiiiiiiiiiiiiiie ettt e e e e e e e e e ee e e e e e e e nneaes 79
10.5 Trigger an XCP COPY OF SYNC OPEIALIONouuueiieiiaeeaiiitieee e e e e e ettt e e e e e s aatbaeeeaaeaaaaebeeeeeeaeeaaaansbeeeaaeeaaannnnes 84
11 Example BasiC Trident OPEratiONsSoccueiii ittt e e s nbe e e 86
11.2 IMPOrt @n EXISHNG VOIUME ..ottt e ettt e e e e e o bbbt e e e e e e e bbtseeeeeeeaannbbneeeaeeaaannenes 86
11.2 ProviSion @ NEW VOIUMEo.uviiiiiiiiie ittt ettt e e et e e s e e s ne et e e aan e e e s mne e e e nnnneeeas 88
12 Example High-performance Jobs for ONTAP Al Deploymentscccccceeiiiiieiiiiieinnece e 88
12.1 Execute a SiNgle-NOde Al WOTKIOAQc.ooiiiiiiiii et e e e e e e e e e e e e nneeee 88
12.2 Execute a Synchronous Distributed Al WOTKIOA..............uueiiiiiiiiiiiei e 91
13 PerfOrmManCe TESTING .eeieiiiieeiiiiie ettt e et bt e ek bt e e e rh bt e e e ek be e e e e bbe e e e e nbe e e e e nbeeeeannee 95
I o] o [od [U E=] o] o OO PP PSP PP PP PPPPP 95
ACKNOWIEAGMENTS .ttt ettt sttt e s s bt e e s n b bt e e e enbbe e e s anbbe e e s snnbeeesannbeeeeannes 96
Where to Find Additional INfOrmation ... 96
A 10T AT 1153 1 Y YRS 97

LIST OF TABLES

Table 1) Validation environment infrastructure details

Table 2) Validation environment software version detailS.ooiiiiiiiiiiiii e 14

3 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Table 3) Performance COMPAriSON FESUILS.coiiiiiiiiiiie ettt e e e et e e s e e e nannee s 95

LIST OF FIGURES

Figure 1) SOIULION VISUBIZALION.ooiiiiiiiiiie ettt e bt s e e s bt e e e bt e e sab e e e s nb b e e e e anbn e e e nnneas 5
Figure 2) Virtual machines VEISUS CONTAINEIS.uiiii ittt ettt e e e e e e e e e e s s e e e e e e satbe s e e e e e e s sasssabaeseeeeaaannees 6
Figure 3) KUDEIOW VISUBIIZALION.cuuiiiiiiie ettt e e e e e et e e e e e st e e e e e e e e e sataasaeeeeeesassstaaeeeeeesaannnes 8
Figure 4) NetAPD SNAPSNOL COPIES.uuiiiiiiee ittt ettt e e e e ettt et e e e e st bbbt e e e e e e sasbbbeeeeaeeaaannbbeeeeaaesaannrens 10
Figure 5) NetApp FIEXCIONE tECNNOIOQYcciiiiiiiiiiie ettt e et e e e e e e e bbbt e e e e e e s e nnrbeeeaaeeeaanneaes 11
Figure 6) NetApp SNapMIrTOr @XAMPIE.eii ittt et e e et et e s s et e e s ne e e e et r e e e sanre e e e snnneeeaanreeennns 11
Figure 7) Cloud Sync

Figure 8) NetApDP FIEXGIOUD VOIUMES.couiiiiiiiiee ettt et ettt s sttt e s bt e e et e e s nbe e e e snbn e e e abbeeennes 13
Figure 9) Synchronous diStriDULEA Al JOD.........coiuiii ettt e e e e st eennes 91

4 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Introduction

Companies and organizations of all sizes and across many industries are turning to artificial intelligence
(Al), machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative
products and services, and to get an edge in an increasingly competitive marketplace. As organizations
increase their use of Al, ML, and DL, they face many challenges, including workload scalability and data
availability. This document demonstrates how you can address these challenges by using the NetApp Al
Control Plane, a solution that pairs NetApp data management capabilities with popular open-source tools
and frameworks.

This report shows you how to rapidly clone a data namespace just as you would a Git repo. It also shows
you how to seamlessly replicate data across sites and regions to create a cohesive and unified Al/ML/DL
data pipeline. Additionally, it walks you through the defining and implementing of Al, ML, and DL training
workflows that incorporate the near-instant creation of data and model baselines for traceability and
versioning. With this solution, you can trace every model training run back to the exact dataset that was
used to train and/or validate the model. Lastly, this document shows you how to swiftly provision Jupyter
Notebook workspaces with access to massive datasets.

The NetApp Al Control Plane is targeted towards data scientists and data engineers, and, thus, minimal
NetApp or NetApp ONTAP® expertise is required. With this solution, data management functions can be
executed using simple and familiar tools and interfaces. If you already have NetApp storage in your
environment, you can test drive the NetApp Al Control plane today. If you want to test drive the solution
but you do not have already have NetApp storage, visit cloud.netapp.com, and you can be up and
running with a cloud-based NetApp storage solution in minutes.

Figure 1) Solution visualization.

[J [J [] [J

- - - -

Data Data Data Data
Scientist Scientist Scientist Engineer
[] o [] o
Jupyter Jupyter 01001010

Web-Based Workspace Web-Based Workspace Automated Pipelines
r AR
Kubeflow bachs kubernetes TRIDENT

Airflow

NetApp® Al Control Plane

NetApp Data Fabric

5 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

http://cloud.netapp.com/

Concepts and Components

Artificial Intelligence

Al is a computer science discipline in which computers are trained to mimic the cognitive functions of the
human mind. Al developers train computers to learn and to solve problems in a manner that is similar to,
or even superior to, humans. Deep learning and machine learning are subfields of Al. Organizations are
increasingly adopting Al, ML, and DL to support their critical business needs. Some examples are as
follows:

e Analyzing large amounts of data to unearth previously unknown business insights
e Interacting directly with customers by using natural language processing
e Automating various business processes and functions

Modern Al training and inference workloads require massively parallel computing capabilities. Therefore,
GPUs are increasingly being used to execute Al operations because the parallel processing capabilities
of GPUs are vastly superior to those of general-purpose CPUs.

Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel.
The adoption of containers is increasing rapidly. Containers offer many of the same application
sandboxing benefits that virtual machines (VMs) offer. However, because the hypervisor and guest
operating system layers that VMs rely on have been eliminated, containers are far more lightweight. See
Figure 2 for a visualization.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly
with an application. The most commonly used container packaging format is the Docker container. An
application that has been containerized in the Docker container format can be executed on any machine
that can run Docker containers. This is true even if the application’s dependencies are not present on the
machine because all dependencies are packaged in the container itself. For more information, visit the
Docker website.

Figure 2) Virtual machines versus containers.

Application B

Application B

Guest Operating System
Dependencies

Physical Infrastructure Physical Infrastructure

Virtual Machines (VMs) Containers

6 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.docker.com/

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed
by Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes
enables the automation of deployment, management, and scaling functions for containerized applications.
In recent years, Kubernetes has emerged as the dominant container orchestration platform. Although
other container packaging formats and run times are supported, Kubernetes is most often used as an
orchestration system for Docker containers. For more information, visit the Kubernetes website.

NetApp Trident

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly
simplifies the creation, management, and consumption of persistent storage for Kubernetes workloads.
Trident, itself a Kubernetes-native application, runs directly within a Kubernetes cluster. With Trident,
Kubernetes users (developers, data scientists, Kubernetes administrators, and so on) can create,
manage, and interact with persistent storage volumes in the standard Kubernetes format that they are
already familiar with. At the same time, they can take advantage of NetApp advanced data management
capabilities and a data fabric that is powered by NetApp technology. Trident abstracts away the
complexities of persistent storage and makes it simple to consume. For more information, visit the Trident
website.

NVIDIA DeepOps

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of
GPU server clusters according to best practices. DeepOps is modular and can be used for various
deployment tasks. For this document and the validation exercise that it describes, DeepOps is used to
deploy a Kubernetes cluster that consists of GPU server worker nodes. For more information, visit the
DeepOps website.

Kubeflow

Kubeflow is an open source Al and ML toolkit for Kubernetes that was originally developed by Google.
The Kubeflow project makes deployments of Al and ML workflows on Kubernetes simple, portable, and
scalable. Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what
they know best—data science. See Figure 3 for a visualization. Kubeflow has been gaining significant
traction as enterprise IT departments have increasingly standardized on Kubernetes. For more
information, visit the Kubeflow website.

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for
defining and deploying portable and scalable Al and ML workflows. For more information, see the official
Kubeflow documentation.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows data scientists to create wiki-
like documents called Jupyter Notebooks that contain live code as well as descriptive test. Jupyter
Notebooks are widely used in the Al and ML community as a means of documenting, storing, and sharing
Al and ML projects. Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on
Kubernetes. For more information on Jupyter Notebooks, visit the Jupyter website. For more information
about Jupyter Notebooks within the context of Kubeflow, see the official Kubeflow documentation.

7 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://kubernetes.io/
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://github.com/NVIDIA/deepops
http://www.kubeflow.org/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://www.jupyter.org/
https://www.kubeflow.org/docs/components/jupyter/

Figure 3) Kubeflow visualization.

L‘ Al/ML workloads
Kubeflow
Orchestration
kubernetes
Persistent storage ANSIBLE
TRIDENT
? Compute/Cloud

Apache Airflow

Apache Airflow is an open-source workflow management platform that enables programmatic authoring,
scheduling, and monitoring for complex enterprise workflows. It is often used to automate ETL and data
pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by
Airbnb but has since become very popular in the industry and now falls under the auspices of The
Apache Software Foundation. Airflow is written in Python, Airflow workflows are created via Python
scripts, and Airflow is designed under the principle of "configuration as code.” Many enterprise Airflow
users now run Airflow on top of Kubernetes.

Directed Acyclic Graphs (DAGS)

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are
executed in sequence, in parallel, or a combination of the two, depending on the DAG definition. The
Airflow scheduler executes individual tasks on an array of workers, adhering to the task-level
dependencies that are specified in the DAG definition. DAGs are defined and created via Python scripts.

NetApp ONTAP 9

NetApp ONTAP 9 is the latest generation of storage management software from NetApp that enables
businesses like yours to modernize infrastructure and to transition to a cloud-ready data center. With
industry-leading data management capabilities, ONTAP enables you to manage and protect your data
with a single set of tools regardless of where that data resides. You can also move data freely to
wherever you need it: the edge, the core, or the cloud. ONTAP 9 includes numerous features that simplify
data management, accelerate and protect your critical data, and future-proof your infrastructure across
hybrid cloud architectures.

8 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Simplify Data Management

Data management is crucial for your enterprise IT operations so that you can use appropriate resources
for your applications and datasets. ONTAP includes the following features to streamline and simplify your
operations and reduce your total cost of operation:

e Inline data compaction and expanded deduplication. Data compaction reduces wasted space
inside storage blocks, and deduplication significantly increases effective capacity.

e Minimum, maximum, and adaptive quality of service (QoS). Granular QoS controls help maintain
performance levels for critical applications in highly shared environments.

e ONTAP FabricPool. This feature provides automatic tiering of cold data to public and private cloud
storage options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID® object-
based storage.

Accelerate and Protect Data

ONTAP delivers superior levels of performance and data protection and extends these capabilities with
the following features:

e High performance and low latency. ONTAP offers the highest possible throughput at the lowest
possible latency.

e NetApp ONTAP FlexGroup technology. A FlexGroup volume is a high-performance data container
that can scale linearly to up to 20PB and 400 billion files, providing a single namespace that simplifies
data management.

o Data protection. ONTAP provides built-in data protection capabilities with common management
across all platforms.

e NetApp Volume Encryption. ONTAP offers native volume-level encryption with both onboard and
external key management support.

Future-Proof Infrastructure
ONTAP 9 helps meet your demanding and constantly changing business needs:

e Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of
capacity to existing controllers and to scale-out clusters. You can upgrade to the latest technologies,
such as NVMe and 32Gb FC, without costly data migrations or outages.

¢ Cloud connection. ONTAP is one of the most cloud-connected storage management software, with
options for software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud
Volumes Service) in all public clouds.

e Integration with emerging applications. By using the same infrastructure that supports existing
enterprise apps, ONTAP offers enterprise-grade data services for next-generation platforms and
applications such as OpenStack, Hadoop, and MongoDB.

NetApp Snapshot Copies

A NetApp Snapshot™ copy is a read-only, point-in-time image of a volume. The image consumes minimal
storage space and incurs negligible performance overhead because it only records changes to files
create since the last Snapshot copy was made.

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write
Anywhere File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on
disk. But, unlike a database, WAFL does not overwrite existing blocks. It writes updated data to a new
block and changes the metadata. It's because ONTAP references metadata when it creates a Snapshot
copy, rather than copying data blocks, that Snapshot copies are so efficient. Doing so eliminates the
"seek time" that other systems incur in locating the blocks to copy, as well as the cost of making the copy
itself.

9 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

You can use a Snapshot copy to recover individual files or LUNS or to restore the entire contents of a
volume. ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the
missing or damaged object, without downtime or a significant performance cost.

Figure 4) NetApp Snapshot copies.

Blocks in Blocks on Blocks in Blocks on
a File the Disk a File the Disk

XE
o = >)

SnapShot SnapShot SnapShot
Copy 1 Copy 1 Copy 2

A Snapshot copy records only changes to the active file
system since the last Shapshot copy.

NetApp FlexClone Technology

NetApp FlexClone® technology references Snapshot metadata to create writable, point-in-time copies of a
volume. Copies share data blocks with their parents, consuming no storage except what is required for
metadata, until changes are written to the copy. Where traditional copies can take minutes or even hours
to create, FlexClone software lets you copy even the largest datasets almost instantaneously. That
makes it ideal for situations in which you need multiple copies of identical datasets (a development

workspace, for example) or temporary copies of a dataset (testing an application against a production
dataset).

10 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Figure 5) NetApp FlexClone technology.
Traditional Copy FlexClone Copy

Copy 1 Copy 2 Copy 3

Copy 4 Original Copy 5

Copy 6 Copy 7 Copy 8

FlexClone copies share data blocks with their parents, consuming no
storage except what is required for metadata.

NetApp SnapMirror Data Replication Technology

NetApp SnapMirror® software is a cost-effective, easy-to-use unified replication solution across the data
fabric. It replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data
replication for applications of all types, including business critical applications in both virtual and
traditional environments. When you replicate data to one or more NetApp storage systems and
continually update the secondary data, your data is kept current and is available whenever you need it.
No external replication servers are required. See Figure 6 for an example of an architecture that
leverages SnapMirror technology.

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over
the network. SnapMirror software also uses built-in network compression to accelerate data transfers and
reduce network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one
thin replication data stream to create a single repository that maintains both the active mirror and prior
point-in-time copies, reducing network traffic by up to 50%.

Figure 6) NetApp SnapMirror example.

% &) Jenkins

kubernetes Kubeflow
(A &
ANSIBLE

E] @ Infrastructure provisioning
n Dev/Test automation
8 Infrastructure as code

TRIDENT TRIDENT

ED - -

NetApp SnapMirror®
StorageGRlD
NetApp Cloud Sync/SnapMirror
Dev/Test or burstin cloud

NetApp Snapshot™ copies Object storage Snapshot copies

NetApp® Data Fabrlc Datas et/model versio.ns IC)::: lt:aki: tiering Dmsem’;‘:iﬁ:z: versions

A/B testing

Edge Core Cloud

11 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

NetApp Cloud Sync

Cloud Sync is a NetApp service for rapid and secure data synchronization. Whether you need to transfer
files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp
Cloud Volumes Service, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or
IBM Cloud Object Storage, Cloud Sync moves the files where you need them quickly and securely.

After your data is transferred, it is fully available for use on both source and target. Cloud Sync can sync
data on-demand when an update is triggered or continuously sync data based on a predefined schedule.
Regardless, Cloud Sync only moves the deltas, so time and money spent on data replication is
minimized.

Cloud Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data
transfers that are triggered by Cloud Sync are carried out by data brokers. Cloud Sync data brokers can
be deployed in AWS, Azure, Google Cloud Platform, or on-premises.

Figure 7) Cloud Sync.

Drag & Drop your selection into the source and target components

L= () O == == (nl aws o (< 5] 9

NFS NES — EFS SMB SMB ONTAP

NFS Server ~ Azure NetApp Cloud Volumes — AWS EFS SMB Server Azure NetApp AWS S3 StorageGRID IBM Cloud ONTAPS3 Google Cloud Azure Blob
Files (NFS) Service (NFS) Files (SMB) Object Storage Storage Storage

Drag Source Here Drag Target Here

NetApp XCP

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file
system insights. XCP is designed to scale and achieve maximum performance by utilizing all available

system resources to handle high-volume datasets and high-performance migrations. XCP helps you to

gain complete visibility into the file system with the option to generate reports.

NetApp XCP is available in a single package that supports NFS and SMB protocols. XCP includes a
Linux binary for NFS data sets and a windows executable for SMB data sets.

NetApp XCP File Analytics is host-based software that detects file shares, runs scans on the file system,
and provides a dashboard for file analytics. XCP File Analytics is compatible with both NetApp and non-
NetApp systems and runs on Linux or Windows hosts to provide analytics for NFS and SMB-exported file
systems.

NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video,
and other forms of unstructured data that must be stored and processed to be read in parallel. The

12 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

storage system must store large numbers of small files and must read those files in parallel for sequential
and random I/O.

A FlexGroup volume (Figure 8) is a single namespace that comprises multiple constituent member
volumes. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a
NetApp FlexVol® volume. Files in a FlexGroup volume are allocated to individual member volumes and
are not striped across volumes or nodes. They enable the following capabilities:

e FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-
metadata workloads.

e They support up to 400 billion files in the same namespace.

e They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and
constituent FlexVol volumes.

Figure 8) NetApp FlexGroup volumes.

HA PAIR HA PAIR

. [FlexGroup

Hardware and Software Requirements

All procedures outlined in this document were validated on the NetApp ONTAP Al converged
infrastructure solution described in NVA-1121. This verified architecture pairs a NetApp AFF A800 all-
flash storage system with the NVIDIA DGX-1 Deep Learning System using Cisco Nexus networking. For
this validation exercise, two bare-metal NVIDIA DGX-1 systems, each featuring eight NVIDIA V100
GPUs, were used as Kubernetes worker nodes. A NetApp AFF A800 all-flash storage system provided a
single persistent storage namespace across nodes, and two Cisco Nexus 3232C switches were used to
provide network connectivity. Three virtual machines (VMs) that ran on a separate physical server outside
of the ONTAP Al pod were used as Kubernetes master nodes. See Table 1 for validation environment
infrastructure details. See Table 2 for validation environment software version details.

Note, however, that the NetApp Al Control Plane solution that is outlined in this document is not
dependent on this specific hardware. The solution is compatible with any NetApp physical storage
appliance, software-defined instance, or cloud service, that supports the NFS protocol. Examples include
a NetApp AFF storage system, Azure NetApp Files, NetApp Cloud Volumes Service, a NetApp ONTAP
Select software-defined storage instance, or a NetApp Cloud Volumes ONTAP instance. Additionally, the
solution can be implemented on any Kubernetes cluster as long as the Kubernetes version used is
supported by Kubeflow and NetApp Trident. For a list of Kubernetes versions that are supported by
Kubeflow, see the see the official Kubeflow documentation. For a list of Kubernetes versions that are
supported by Trident, see the Trident documentation.

13 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/

Table 1) Validation environment infrastructure details.

Component Quantity Details Operating System
Deployment jump host 1 VM Ubuntu 18.04.5 LTS
Kubernetes master nodes 3 VM Ubuntu 18.04.5LTS
Kubernetes worker nodes 2 NVIDIA DGX-1 (bare-metal) NVIDIA DGX OS 4.0.5

(based on Ubuntu 18.04.2 LTS)
Storage 1 HA Pair = NetApp AFF A800 NetApp ONTAP 9.6 P1
Network connectivity 2 Cisco Nexus 3232C Cisco NX-0OS 7.0(3)16(1)

Table 2) Validation environment software version details.

Component Version
Apache Airflow 1.10.12
Apache Airflow Helm Chart 7.10.1
Cisco NX-0OS 7.0(3)I6(1)
Docker 18.09.7
Kubeflow 1.0
Kubernetes 1.17.9
NetApp ONTAP 9.6 P1
NetApp Trident 20.07
NVIDIA DeepOps 20.08.1
NVIDIA DGX OS 4.0.5 (based on Ubuntu 18.04.2 LTS)
Ubuntu 18.04.5LTS
Support

NetApp does not offer enterprise support for Apache Airflow, Docker, Kubeflow, Kubernetes, or NVIDIA
DeepOps. If you are interested in a fully supported solution with capabilities similar to the NetApp Al
Control Plane solution, contact NetApp about fully supported AI/ML solutions that NetApp offers jointly
with partners.

Kubernetes Deployment

This section describes the tasks that you must complete to deploy a Kubernetes cluster in which to
implement the NetApp Al Control Plane solution. If you already have a Kubernetes cluster, then you can
skip this section as long as you are running a version of Kubernetes that is supported by Kubeflow and
NetApp Trident. For a list of Kubernetes versions that are supported by Kubeflow, see the see the official
Kubeflow documentation. For a list of Kubernetes versions that are supported by Trident, see the Trident
documentation.

For on-premises Kubernetes deployments that incorporate bare-metal nodes featuring NVIDIA GPU(s),
NetApp recommends using NVIDIA’s DeepOps Kubernetes deployment tool. This section outlines the
deployment of a Kubernetes cluster using DeepOps.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have
already performed the following tasks:

14 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.netapp.com/us/contact-us/index.aspx?for_cr=us
https://www.kubeflow.org/docs/started/getting-started/
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/

1. You have already configured any bare-metal Kubernetes nodes (for example, an NVIDIA DGX
system that is part of an ONTAP Al pod) according to standard configuration instructions.

2. You have installed a supported operating system on all Kubernetes master and worker nodes and on
a deployment jump host. For a list of operating systems that are supported by DeepOps, see the
DeepOps GitHub site.

Use NVIDIA DeepOps to Install and Configure Kubernetes

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the following tasks from
a deployment jump host:

1. Download NVIDIA DeepOps by following the instructions on the Getting Started page on the NVIDIA
DeepOps GitHub site.

2. Deploy Kubernetes in your cluster by following the instructions on the Kubernetes Deployment Guide
page on the NVIDIA DeepOps GitHub site.

Note: For the DeepOps Kubernetes deployment to work, the same user must exist on all
Kubernetes master and worker nodes.

If the deployment fails, change the value of kubectl localhost to falsein
deepops/config/group vars/k8s-cluster.yml and repeat step 2. The Copy kubectl binary
to ansible host task, which executes only when the value of kubectl localhost is true, relies
on the fetch Ansible module, which has known memory usage issues. These memory usage issues can
sometimes cause the task to fail. If the task fails because of a memory issue, then the remainder of the
deployment operation does not complete successfully.

If the deployment completes successfully after you have changed the value of kubectl localhost to
false, then you must manually copy the kubectl binary from a Kubernetes master node to the
deployment jump host. You can find the location of the kubectl binary on a specific master node by
executing the command which kubectl directly on that node.

NetApp Trident Deployment and Configuration

This section describes the tasks that you must complete to install and configure NetApp Trident in your
Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have
already performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is
supported by Trident. For a list of supported versions, see the Trident documentation.

2. You already have a working NetApp storage appliance, software-defined instance, or cloud storage
service, that supports the NFS protocol.

Install Trident

To install and configure NetApp Trident in your Kubernetes cluster, perform the following tasks from the
deployment jump host:

1. Deploy Trident using one of the following methods:

a. |If you used NVIDIA DeepOps to deploy your Kubernetes cluster, you can also use NVIDIA
DeepOps to deploy Trident in your Kubernetes cluster. To deploy Trident with DeepOps, follow
the Trident deployment instructions on the NVIDIA DeepOps GitHub site.

15 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops/blob/master/docs/getting-started.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md
https://netapp-trident.readthedocs.io/
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md#netapp-trident

b. If you did not use NVIDIA DeepOps to deploy your Kubernetes cluster or if you simply prefer to
deploy Trident manually, you can deploy Trident by following the deployment instructions in the
Trident documentation. Be sure to create at least one Trident backend and at least one
Kubernetes StorageClass. For more information about backends and StorageClasses, see the
Trident documentation.

Note: If you are deploying the NetApp Al Control Plane solution on an ONTAP Al pod, see the
section “Example Trident Backends for ONTAP Al Deployments” for some examples of
different Trident backends that you might want to create and the section “Example
Kubernetes StorageClasses for ONTAP Al Deployments” for some examples of different
Kubernetes StorageClasses that you might want to create.

Example Trident Backends for ONTAP Al Deployments

Before you can use Trident to dynamically provision storage resources within your Kubernetes cluster,
you must create one or more Trident backends. The examples that follow represent different types of
backends that you might want to create if you are deploying the NetApp Al Control Plane solution on an
ONTAP Al pod. For more information about backends, see the Trident documentation.

1. NetApp recommends creating a FlexGroup-enabled Trident backend for each data LIF (logical
network interface that provides data access) that you want to use on your NetApp AFF system. Due
to NFS protocol limitations, a single NFS mount can provide only 1.5GBps to 2GBps of bandwidth. If
you need more bandwidth for a job, Trident enables you to add multiple NFS mounts (mounting the
same NFS volume multiple times) quickly and easily when you create a Kubernetes pod. For
maximum performance, these multiple mounts should be distributed across different data LIFs. You
must create a Trident backend for each data LIF that you want to use for these mounts.

The example commands that follow show the creation of two FlexGroup-enabled Trident backends
for two different data LIFs that are associated with the same ONTAP storage virtual machine (SVM).
These backends use the ontap-nas-flexgroup storage driver. ONTAP supports two main data
volume types: FlexVol and FlexGroup. FlexVol volumes are size-limited (as of this writing, the
maximum size depends on the specific deployment). FlexGroup volumes, on the other hand, can
scale linearly to up to 20PB and 400 billion files, providing a single namespace that greatly simplifies
data management. Therefore, FlexGroup volumes are optimal for Al and ML workloads that rely on
large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup
volumes, you can create Trident backends that use the ontap-nas storage driver instead of the

ontap-nas-flexgroup storage driver.

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-ifacel.json
{

"version": 1,

"storageDriverName": "ontap-nas-flexgroup",

"backendName": "ontap-ai-flexgroups-ifacel",

"managementLIF": "10.61.218.100",

"dataLIF": "192.168.11.11",

"svm": "ontapai nfs",

"username": "admin",

"password": "ontapai"
}
EOF
$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-ifacel.json -n trident
R e e e e e R e e L Lt e e L L L L e L L et fom———
il e +
| NAME | STORAGE DRIVER | UuID | STATE
| VOLUMES |
R e e e e e B e e L Lt e e L L L L e L L et fom———
il e +

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface2.json

16 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/

"version": 1,

"storageDriverName": "ontap-nas-flexgroup",

"backendName": "ontap-ai-flexgroups-iface2",

"managementLIF": "10.61.218.100",

"dataLIF": "192.168.12.12",

"svm": "ontapai nfs",

"username": "admin",

"password": "ontapai"
}
EOF
$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-iface2.json -n trident
o Fom B -
——tmm e +
| NAME | STORAGE DRIVER | UuID | STATE
| VOLUMES |
o Fom o to————
——tmm e +
| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cbd-cf7ee661274d |
online | 0 |
o Fom o to————
——tmm e +
$ tridentctl get backend -n trident
o Fom e ettt et T et +o————
——t—— +
| NAME | STORAGE DRIVER | UUID | STATE
| VOLUMES |
o Fom e ettt et T et +o————
——t—— +
| ontap-ai-flexgroups-ifacel | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6decObdd |
online | 0 |
| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cbd-cf7ee661274d |
online | 0 |
B e L e e e R e L L e L LT e fom————
e +

2. NetApp also recommends creating one or more FlexVol-enabled Trident backends. If you use
FlexGroup volumes for training dataset storage, you might want to use FlexVol volumes for storing
results, output, debug information, and so on. If you want to use FlexVol volumes, you must create
one or more FlexVol-enabled Trident backends. The example commands that follow show the
creation of a single FlexVol-enabled Trident backend that uses a single data LIF.

$ cat << EOF > ./trident-backend-ontap-ai-flexvols.json
{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "ontap-ai-flexvols",

"managementLIF": "10.61.218.100",

"dataLIF": "192.168.11.11",

"svm": "ontapai nfs",

"username": "admin",

"password": "ontapai"
}
EOF
$ tridentctl create backend -f ./trident-backend-ontap-ai-flexvols.json -n trident
- o - -
——t +
| NAME | STORAGE DRIVER | UuID | STATE
| VOLUMES |
- o - -
——t +
| ontap-ai-flexvols | ontap-nas | 52bdb3bl-13a5-4513-a9cl-52a69657fabe |
online | 0 |
- o - -
——t +
$ tridentctl get backend -n trident
o o o fo——
-t +
| NAME | STORAGE DRIVER | UuID | STATE
| VOLUMES |

17 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

| ontap-ai-flexvols | ontap-nas | 52bdb3bl-13a5-4513-a9cl-52a69657fabe |
online | 0 |
| ontap-ai-flexgroups-ifacel | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6dabdecObdd |
online | 0 |
| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |
online | 0 |

Example Kubernetes StorageClasses for ONTAP Al Deployments

Before you can use Trident to dynamically provision storage resources within your Kubernetes cluster,
you must create one or more Kubernetes StorageClasses. The examples that follow represent different
types of StorageClasses that you might want to create if you are deploying the NetApp Al Control Plane
solution on an ONTAP Al pod. For more information about StorageClasses, see the Trident
documentation.

1. NetApp recommends creating a separate StorageClass for each FlexGroup-enabled Trident backend
that you created in the section “Example Trident Backends for ONTAP Al Deployments,” step 1.
These granular StorageClasses enable you to add NFS mounts that correspond to specific LIFs (the
LIFs that you specified when you created the Trident backends) as a particular backend that is
specified in the StorageClass spec file. The example commands that follow show the creation of two
StorageClasses that correspond to the two example backends that were created in the section
“Example Trident Backends for ONTAP Al Deployments,” step 1. The highlighted text shows where
the Trident backend is specified in the StorageClass definition file. For more information about
StorageClasses, see the Trident documentation.

Note: So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim
(PVC) is deleted, the following example uses a reclaimPolicy value of Retain. For more
information about the reclaimPolicy field, see the official Kubernetes documentation.

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-ifacel.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: ontap-ai-flexgroups-retain-ifacel
provisioner: netapp.io/trident
parameters:
backendType: "ontap-nas-flexgroup"
storagePools: "ontap-ai-flexgroups-ifacel:.*"
reclaimPolicy: Retain
EOF
$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-ifacel.yaml
storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-ifacel created
$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: ontap-ai-flexgroups-retain-iface?2
provisioner: netapp.io/trident
parameters:
backendType: "ontap-nas-flexgroup"
storagePools: "ontap-ai-flexgroups-iface2:.*"
reclaimPolicy: Retain
EOF
$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml
storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface2 created
$ kubectl get storageclass

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain-ifacel netapp.io/trident Om
ontap-ai-flexgroups-retain-iface2 netapp.io/trident Om

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident
backend that you created in the section “Example Trident Backends for ONTAP Al Deployments,”

18 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/storage-classes/

step 2. The example commands that follow show the creation of a single StorageClass for FlexVol
volumes.

Note: In the following example, a particular backend is not specified in the StorageClass definition
file because only one FlexVol-enabled Trident backend was created in the section “Install
Trident,” step 2. When you use Kubernetes to administer volumes that use this StorageClass,
Trident attempts to use any available backend that uses the ontap-nas driver.

$ cat << EOF > ./storage-class-ontap-ai-flexvols-retain.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: ontap-ai-flexvols-retain
provisioner: netapp.io/trident
parameters:
backendType: "ontap-nas"
reclaimPolicy: Retain
EOF
$ kubectl create -f ./storage-class-ontap-ai-flexvols-retain.yaml
storageclass.storage.k8s.io/ontap-ai-flexvols-retain created
$ kubectl get storageclass

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain-ifacel netapp.io/trident Im
ontap-ai-flexgroups-retain-iface?2 netapp.io/trident 1m
ontap-ai-flexvols-retain netapp.io/trident Om

3. NetApp also recommends creating a generic StorageClass for FlexGroup volumes. The following
example commands show the creation of a single generic StorageClass for FlexGroup volumes. Note
that a particular backend is not specified in the StorageClass definition file. Therefore, when you use
Kubernetes to administer volumes that use this StorageClass, Trident attempts to use any available
backend that uses the ontap-nas-flexgroup driver.

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: ontap-ai-flexgroups-retain
provisioner: netapp.io/trident
parameters:
backendType: "ontap-nas-flexgroup"
reclaimPolicy: Retain
EOF
$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain.yaml
storageclass.storage.k8s.io/ontap-ai-flexgroups-retain created
$ kubectl get storageclass

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain netapp.io/trident Om
ontap-ai-flexgroups-retain-ifacel netapp.io/trident 2m
ontap-ai-flexgroups-retain-iface2 netapp.io/trident 2m
ontap-ai-flexvols-retain netapp.io/trident 1m

Kubeflow Deployment

This section describes the tasks that you must complete to deploy Kubeflow in your Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have
already performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is
supported by Kubeflow. For a list of supported versions, see the official Kubeflow documentation.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in
the section “NetApp Trident Deployment and Configuration.”

19 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.kubeflow.org/docs/started/getting-started/

Set Default Kubernetes StorageClass

Before you deploy Kubeflow, you must designate a default StorageClass within your Kubernetes cluster.
The Kubeflow deployment process attempts to provision new persistent volumes using the default
StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment fails.
To designate a default StorageClass within your cluster, perform the following task from the deployment
jump host. If you have already designated a default StorageClass within your cluster, then you can skip
this step.

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands
that follow show the designation of a StorageClass named ontap-ai-flexvols-retain as the
default StorageClass.

Note: The ontap-nas-flexgroup Trident backend type has a minimum PVC size of 800GB. By
default, Kubeflow attempts to provision PVCs that are smaller than 800GB. Therefore, you
should not designate a StorageClass that utilizes the ontap-nas-flexgroup backend type
as the default StorageClass for the purposes of Kubeflow deployment.

$ kubectl get sc

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-ifacel csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-iface? csi.trident.netapp.io 25h
ontap-ai-flexvols-retain csi.trident.netapp.io 3s

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata":
{"annotations": {"storageclass.kubernetes.io/is-default-class":"true"}}}'

storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched
$ kubectl get sc

NAME PROVISIONER AGE
ontap-ai-flexgroups-retain csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-ifacel csi.trident.netapp.io 25h
ontap-ai-flexgroups-retain-iface? csi.trident.netapp.io 25h
ontap-ai-flexvols-retain (default) csi.trident.netapp.io 54s

Use NVIDIA DeepOps to Deploy Kubeflow

NetApp recommends using the Kubeflow deployment tool that is provided by NVIDIA DeepOps. To
deploy Kubeflow in your Kubernetes cluster using the DeepOps deployment tool, perform the following
tasks from the deployment jump host.

Note: Alternatively, you can deploy Kubeflow manually by following the installation instructions in the
official Kubeflow documentation

1. Deploy Kubeflow in your cluster by following the Kubeflow deployment instructions on the NVIDIA
DeepOps GitHub site.

2. Note down the Kubeflow Dashboard URL that the DeepOps Kubeflow deployment tool outputs.

$./scripts/k8s_deploy kubeflow.sh
INFO[0007] Applied the configuration Successfully! filename="cmd/apply.go:72"
Kubeflow app installed to: /home/ai/kubeflow

It may take several minutes for all services to start. Run 'kubectl get pods -n kubeflow' to
verify

To remove (excluding CRDs, istio, auth, and cert-manager), run: ./scripts/k8s deploy kubeflow.sh
-d
To perform a full uninstall : ./scripts/k8s_deploy kubeflow.sh -D

Kubeflow Dashboard (HTTP NodePort): http://10.61.188.111:31380

3. Confirm that all pods deployed within the Kubeflow nhamespace show a STATUS of Running and
confirm that no components deployed within the namespace are in an error state.

20 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.kubeflow.org/docs/started/getting-started/
https://github.com/NVIDIA/deepops/blob/master/docs/k8s-cluster/kubeflow.md

$ kubectl get all -n kubeflow

NAME READY STATUS RESTARTS AGE
pod/admission-webhook-bootstrap-stateful-set-0 1/1 Running 0 95s
pod/admission-webhook-deployment-6b89c84c98-vrtbh 1/1 Running 0 91s
pod/application-controller-stateful-set-0 1/1 Running 0 98s
pod/argo-ui-5dcf5d8b4f-m2wn4 1/1 Running 0 97s
pod/centraldashboard-cf4874ddc-7hcr8 1/1 Running 0 97s
pod/jupyter-web-app-deployment-685b455447-gjhh7 1/1 Running 0 96s
pod/katib-controller-88c97d85c-kgg66 1/1 Running 1 95s
pod/katib-db-8598468fd8-5jw2c 1/1 Running 0 95s
pod/katib-manager-574c8c67f9-wtrf5 1/1 Running 1 95s
pod/katib-manager-rest-778857¢c989-fjbzn 1/1 Running 0 95s
pod/katib-suggestion-bayesianoptimization-65df4d7455-gthmw 1/1 Running 0 94s
pod/katib-suggestion-grid-56bf69£597-98vwn 1/1 Running 0 94s
pod/katib-suggestion-hyperband-7777b76cb9-9ve6dg 1/1 Running 0 93s
pod/katib-suggestion-nasrl-77£6£9458c-2gzxqg 1/1 Running 0 93s
pod/katib-suggestion-random-77b88b5c79-16479 1/1 Running 0 93s
pod/katib-ui-7587c5b967-nd629 1/1 Running 0 95s
pod/metacontroller-0 1/1 Running 0 96s
pod/metadata-db-5dd459cc-swzkm 1/1 Running 0 94s
pod/metadata-deployment-6c£77db994-69fk7 1/1 Running 3 93s
pod/metadata-deployment-6¢c£77db994-mpbijt 1/1 Running 3 93s
pod/metadata-deployment-6cf77db994-xg7tz 1/1 Running 3 94s
pod/metadata-ui-78£f5b59b56-gb6kr 1/1 Running 0 94s
pod/minio-758b769d67-11vdr 1/1 Running 0 91s
pod/ml-pipeline-5875b9db95-g8t2k 1/1 Running 0 91s
pod/ml-pipeline-persistenceagent-9b69ddd46-bt9r9 1/1 Running 0 90s
pod/ml-pipeline-scheduledworkflow-7b8d756c76-7x56s 1/1 Running 0 90s
pod/ml-pipeline-ui-79f£fd9c76-fcwpd 1/1 Running 0 90s
pod/ml-pipeline-viewer-controller-deployment-5£fdc87£58-b2t9r 1/1 Running 0 90s
pod/mysgl-657£87857d-15k9z 1/1 Running 0 91s
pod/notebook-controller-deployment-56b4f59bbf-8bvnr 1/1 Running 0 92s
pod/profiles-deployment-6bc745947-mrdkh 2/2 Running 0 90s
pod/pytorch-operator-77c97£4879-hmlrv 1/1 Running 0 92s
pod/seldon-operator-controller-manager-0 1/1 Running 1 91s
pod/spartakus-volunteer-5fdfddb779-17gkm 1/1 Running 0 92s
pod/tensorboard-6544748d94-nh8b2 1/1 Running 0 92s
pod/tf-job-dashboard-56£79c59dd-6w59t 1/1 Running 0 92s
pod/tf-job-operator-79cbfdedbc-rb58c 1/1 Running 0 91s
pod/workflow-controller-db644d554-cwrnb 1/1 Running 0 97s
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT (S) AGE

service/admission-webhook-service ClusterIP 10.233.51.169 <none>

443/TCP 97s

service/application-controller-service ClusterIP 10.233.4.54 <none>

443/TCP 98s

service/argo-ui NodePort 10.233.47.191 <none>
80:31799/TCP 97s

service/centraldashboard ClusterIP 10.233.8.36 <none>

80/TCP 97s

service/jupyter-web-app-service ClusterIP 10.233.1.42 <none>

80/TCP 97s

service/katib-controller ClusterIP 10.233.25.226 <none>

443/TCP 96s

service/katib-db ClusterIP 10.233.33.151 <none>
3306/TCP 97s

service/katib-manager ClusterIP 10.233.46.239 <none>
6789/TCP 96s

service/katib-manager-rest ClusterIP 10.233.55.32 <none>

80/TCP 96s

service/katib-suggestion-bayesianoptimization ClusterIP 10.233.49.191 <none>
6789/TCP 95s

service/katib-suggestion-grid ClusterIP 10.233.9.105 <none>
6789/TCP 95s

service/katib-suggestion-hyperband ClusterIP 10.233.22.2 <none>
6789/TCP 95s

service/katib-suggestion-nasrl ClusterIP 10.233.63.73 <none>
6789/TCP 95s

21 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

service/katib-suggestion-random ClusterIP 10.233.57.210 <none>
6789/TCP 95s

service/katib-ui ClusterIP 10.233.6.116 <none>

80/TCP 96s

service/metadata-db ClusterIP 10.233.31.2 <none>
3306/TCP 96s

service/metadata-service ClusterIP 10.233.27.104 <none>
8080/TCP 96s

service/metadata-ui ClusterIP 10.233.57.177 <none>

80/TCP 96s

service/minio-service ClusterIP 10.233.44.90 <none>
9000/TCP 94s

service/ml-pipeline ClusterIP 10.233.41.201 <none>
8888/TCP, 8887/TCP 94s

service/ml-pipeline-tensorboard-ui ClusterIP 10.233.36.207 <none>

80/TCP 93s

service/ml-pipeline-ui ClusterIP 10.233.61.150 <none>

80/TCP 93s

service/mysql ClusterIP 10.233.55.117 <none>
3306/TCP 94s

service/notebook-controller-service ClusterIP 10.233.10.166 <none>

443/TCP 95s

service/profiles-kfam ClusterIP 10.233.33.79 <none>
8081/TCP 92s

service/pytorch-operator ClusterIP 10.233.37.112 <none>
8443/TCP 95s

service/seldon-operator-controller-manager-service ClusterIP 10.233.30.178 <none>

443/TCP 92s

service/tensorboard ClusterIP 10.233.58.151 <none>
9000/TCP 94s

service/tf-job-dashboard ClusterIP 10.233.4.17 <none>

80/TCP 94s

service/tf-job-operator ClusterIP 10.233.60.32 <none>
8443/TCP 94s

service/webhook-server-service ClusterIP 10.233.32.167 <none>

443/TCP 87s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/admission-webhook-deployment 1/1 1 1 97s
deployment.apps/argo-ui 1/1 1 1 97s
deployment.apps/centraldashboard 1/1 1 1 97s
deployment.apps/jupyter-web-app-deployment 1/1 1 1 97s
deployment.apps/katib-controller 1/1 1 1 96s
deployment.apps/katib-db 1/1 1 1 97s
deployment.apps/katib-manager 1/1 1 1 96s
deployment.apps/katib-manager-rest 1/1 1 1 96s
deployment.apps/katib-suggestion-bayesianoptimization 1/1 1 1 95s
deployment.apps/katib-suggestion-grid 1/1 1 1 95s
deployment .apps/katib-suggestion-hyperband 1/1 1 1 95s
deployment.apps/katib-suggestion-nasrl 1/1 1 1 95s
deployment.apps/katib-suggestion-random 1/1 1 1 95s
deployment.apps/katib-ui 1/1 1 1 96s
deployment.apps/metadata-db 1/1 1 1 96s
deployment.apps/metadata-deployment 3/3 3 3 96s
deployment.apps/metadata-ui 1/1 1 1 96s
deployment.apps/minio 1/1 1 1 94s
deployment.apps/ml-pipeline 1/1 1 1 94s
deployment.apps/ml-pipeline-persistenceagent 1/1 1 1 93s
deployment.apps/ml-pipeline-scheduledworkflow 1/1 1 1 93s
deployment.apps/ml-pipeline-ui 1/1 1 1 93s
deployment.apps/ml-pipeline-viewer-controller-deployment 1/1 1 1 93s
deployment .apps/mysqgl 1/1 1 1 94s
deployment.apps/notebook-controller-deployment 1/1 1 1 95s
deployment.apps/profiles-deployment 1/1 1 1 92s
deployment.apps/pytorch-operator 1/1 1 1 95s
deployment.apps/spartakus-volunteer 1/1 1 1 94s
deployment.apps/tensorboard 1/1 1 1 94s
deployment.apps/tf-job-dashboard 1/1 1 1 94s
deployment.apps/tf-job-operator 1/1 1 1 94s
deployment.apps/workflow-controller 1/1 1 1 97s

22 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

NAME
AGE

replicaset.

97s

replicaset.

97s
replicaset
97s
replicaset
97s

replicaset.

96s
replicaset
97s

replicaset.

96s
replicaset
96s

replicaset.

95s
replicaset
95s

replicaset.

95s
replicaset
95s

replicaset.

95s
replicaset
96s

replicaset.

96s
replicaset
96s

replicaset.

96s

replicaset.

93s
replicaset
93s

replicaset.

92s
replicaset
91s

replicaset.

91s
replicaset
91s

replicaset.

92s
replicaset
94s

replicaset.

91s
replicaset
94s

replicaset.

94s
replicaset
93s

replicaset.

93s

replicaset.

93s

replicaset.

97s

NAME

apps/admission-webhook-deployment-6b89c84c98

apps/argo-ui-5dcf5d8b4f

.apps/centraldashboard-cf4874ddc

.apps/jupyter-web-app-deployment-685b455447

apps/katib-controller-88c97d85¢c

.apps/katib-db-8598468£d8

apps/katib-manager-574c8c67£9

.apps/katib-manager-rest-778857c989

apps/katib-suggestion-bayesianoptimization-65d£4d7455

.apps/katib-suggestion-grid-56bf69£597

apps/katib-suggestion-hyperband-7777b76cb9

.apps/katib-suggestion-nasrl-77£6£9458c¢c

apps/katib-suggestion-random-77b88b5c79

.apps/katib-ui-7587c5b967

apps/metadata-db-5dd459cc

.apps/metadata-deployment-6cf77db994

apps/metadata-ui-78£5b59b56

apps/minio-758b769d67

.apps/ml-pipeline-5875b9db95

apps/ml-pipeline-persistenceagent-9b69ddd46

.apps/ml-pipeline-scheduledworkflow-7b8d756c76

apps/ml-pipeline-ui-79f£d9c76

.apps/ml-pipeline-viewer-controller-deployment-5£fdc87£58

apps/mysqgl-657£87857d

.apps/notebook-controller-deployment-56b4£59bbf

apps/profiles-deployment-6bc745947

.apps/pytorch-operator-77c97£4879

apps/spartakus-volunteer-5fdfddb779

.apps/tensorboard-6544748d94

apps/tf-job-dashboard-56£79c59dd
apps/tf-job-operator-79cbfdedbc

apps/workflow-controller-db644d554

READY

statefulset.apps/admission-webhook-bootstrap-stateful-set 1/1
statefulset.apps/application-controller-stateful-set 1/1

23 NetApp Al Control Plane

DESIRED CURRENT READY

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
3 3 3
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

AGE

97s

98s

© 2020 NetApp, Inc. All Rights Reserved.

statefulset.apps/metacontroller 1/1 98s
statefulset.apps/seldon-operator-controller-manager 1/1 92s

$ kubectl get pvc -n kubeflow

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE

katib-mysgl Bound pvc-b07£293e-d028-11e9-9b9d-00505681a82d 10G1i RWO
ontap-ai-flexvols-retain 27m

metadata-mysqgl Bound pvc-b0£3£032-d028-11e9-9b9d-00505681a82d 10Gi RWO
ontap-ai-flexvols-retain 27m

minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d 20Gi RWO
ontap-ai-flexvols-retain 27m

mysgl-pv-claim Bound pvc-b2429a£d-d028-11e9-9b9d-00505681a82d 20G1 RWO
ontap-ai-flexvols-retain 27m

4. Inyour web browser, access the Kubeflow central dashboard by navigating to the URL that you noted
down in step 2.

Note: The default username is admin@kubeflow.org, and the default password is 12341234. To
create additional users, follow the instructions in the official Kubeflow documentation.

° {7 Kubeflow Central Dashboard X F

<« C {} @ NotSecure | 10.61.218.131 r @ a Baeasa @

-
"F Kubeflow (® Select namespace v
e Dashboard Activity
Quick shortcuts Recent Notebooks Documentation
Upload a pipeline Choase a nameaspai Note! < Getting Started with Kubeflow
L4 Pipelines Get your machineleamning workflow up and (£
running on Kubeflow
4 View all pipeline runs Recent Pipelines
Pipelines y Kubeflo A
4 Create a new Notebook server o [Sample] Basic - Exit Handler .
Notebook Servers Created 9/5/2019, 6:01:55 PM Microkss for Kubeflow
et Kubeflow running locally on [
pervisors
4 View Katib Studies o [sample] Basic - Conditional execution
Katib Created 9/5/2019, 6:01:54 PM Minikube for Kubeflow =
Quickly get Kubeflow running locally
4 View Metadata Artifacts o [Sample] Basic - Parallel execution
Artifact Store Created 9/5/2019, 6:01:52 PM

s Engine and (4]
o3 [sample] Basic - Sequential execution

Created 9/5/2019, 6:01:51 PM
&
o2 [Sample] ML - TFX - Taxi Tip Prediction...
Created 9/5/2019, 6:01:50 PM
Requirements for Kubeflow
n about using Z

detail
v and it

Recent Pipeline Runs

Example Kubeflow Operations and Tasks

This section includes examples of various operations and tasks that you may want to perform using
Kubeflow.

24 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/#add-static-users-for-basic-auth

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data scientist
workspaces. To provision a new Jupyter Notebook server with Kubeflow, perform the following tasks. For
more information about Jupyter Notebooks within the Kubeflow context, see the official Kubeflow
documentation.

1. Optional: If there are existing volumes on your NetApp storage system that you want to mount on the
new Jupyter Notebook server, but that are not tied to PersistentVolumeClaims (PVCs) in the
namespace that the new server is going to be created in (see step 4 below), then you must import
these volumes into that namespace. Use the Trident volume import functionality to import these
volumes.

The example commands that follow show the importing of an existing volume named pb fg all into
the kubeflow-anonymous namespace. These commands create a PVC in the kubeflow-
anonymous hamespace that is tied to the volume on the NetApp storage system. For more
information about PVCs, see the official Kubernetes documentation. For more information about the
volume import functionality, see the Trident documentation. For a detailed example showing the
importing of a volume using Trident, see the section “0.”

Note: The volume is imported in the kubeflow-anonymous namespace because that is the
namespace that the new Jupyter Notebook server is created in in step 4. To mount this
existing volume on the new Jupyter Notebook server using Kubeflow, a PVC must exist for
the volume in the same namespace.

$ cat << EOF > ./pvc-import-pb fg all-kubeflow-anonymous.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: pb-fg-all

namespace: kubeflow-anonymous
spec:

accessModes:

- ReadOnlyMany

storageClassName: ontap-ai-flexgroups-retain
EOF
$ tridentctl import volume ontap-ai-flexgroups-ifacel pb fg all -f ./pvc-import-pb fg all-
kubeflow-anonymous.yaml -n trident

o o o fommm o it
—————————————————————————————————— Fommm e

| NAME | SIZE | STORAGE CLASS | PROTOCOL |
BACKEND UUID | STATE | MANAGED

o o o fommm o it
—————————————————————————————————— Fommm e

| pvc-led071be-d5a6-11e9-8278-00505681feb6 | 10 TiB | ontap-ai-flexgroups-retain | file |
12f4£8fa-0500-4710-a023-d%47e86a2ec | online | true |

B Fo————— et ettt e Tt Fomm +———
—————————————————————————————————— R e L L

$ kubectl get pvc -n kubeflow-anonymous

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE

pb-fg-all Bound pvc-led071lbe-d5a6-11e9-8278-00505681feb6 10T1 ROX ontap-
ai-flexgroups-retain l4s

2. From the Kubeflow central dashboard, click Notebook Servers in the main menu to navigate to the
Jupyter Notebook server administration page.

25 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.kubeflow.org/docs/components/jupyter/
https://www.kubeflow.org/docs/components/jupyter/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/

L] {7 Kubeflow Central Dashboard x +

3 C {Y @ NotSecure | 10.61.218.131

ffo‘ Kubeflow

@ kubeflow-anonymous ~

Quick shortcuts

4 Upload a pipeline

Pipelines

4' View all pipeline runs

Pipelines

& Create a new Notebook server
Notebook Servers

4 View Katib Studies
Katib

4 View Metadata Artifacts
Artifact Store

3. Click New Server to provision a new Jupyter Notebook server.

{™ Kubeflow Central Dashboard x +

C Y @ NotSecure | 10.61.218.131:31380/_/jupyter/?ns

= {Eg‘ Kubeflow

Notebook Servers

Status

$ kubeflow-anonymous ~

Name Age Image cPU Memory

=+ NEW SERVER

Volumes

4. Give your new server a name, choose the Docker image that you want your server to be based on,
and specify the amount of CPU and RAM to be reserved by your server. If the Namespace field is
blank, use the Select Namespace menu in the page header to choose a hamespace. The
Namespace field is then auto-populated with the chosen namespace.

In the following example, the kubeflow-anonymous hamespace is chosen. In addition, the default
values for Docker image, CPU, and RAM are accepted.

26 NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard x +

C 1} A NotSecure | 10.61.218.131

= ff.‘ Kubeflow $ kubeflow-anonymous ~

B Name

Specify the name of the Notebook Server and the Namespace it will belong to.

Name Namespace
mike kubeflow-anonymous
& Image

A starter Jupyter Docker Image with a baseline deployment and typical ML packages
[] Custom Image
Image

ger.io/kubeflow-images-public/tensorflow-1.13.1-notebook-cpu:v0.5.0

¥ CPU/RAM

Specify the total amount of CPU and RAM reserved by your Notebook Server. For CPU-intensive workloads, you can choose
more than 1 CPU (e.g. 1.5)

CPU Memory

0.5 1.0Gi

5. Specify the workspace volume details. If you choose to create a new volume, then that volume or
PVC is provisioned using the default StorageClass. Because a StorageClass utilizing Trident was
designated as the default StorageClass in the section “Set Default Kubernetes StorageClass,” the
volume or PVC is provisioned with Trident. This volume is automatically mounted as the default
workspace within the Jupyter Notebook Server container. Any notebooks that a user creates on the
server that are not saved to a separate data volume are automatically saved to this workspace
volume. Therefore, the notebooks are persistent across reboots.

Workspace Volume
Configure the Volume to be mounted as your personal Workspace.

[] Don't use Persistent Storage for User's home
Type Name Size Mode

-

New - workspace-mike 10Gi ReadWriteOnce

6. Add data volumes. The following example specifies the existing volume that was imported by the
example commands in step 1 and accepts the default mount point.

&= Data Volumes

Configure the Volumes to be mounted as your Datasets.

+ ADD VOLUME

Type Name Mount Point

Existing h pb-fg-all /home/jovyan/data-vol-1 [

27 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

7. Optional: Request that the desired number of GPUs be allocated to your notebook server. In the
following example, one GPU is requested.

== Configurations
Extra layers of configurations that will be applied to the new Notebook. (e.g. Insert credentials as Secrets, set Environment

Variables.)

Configurations -

9 Extra Resources
Specify extra resoucres that might be needed in the Notebook Server.

@) Enable Shared Memory

Extra Resources *
{"nvidia.com/gpu": 1}

Extra Resources available in the cluster (ex. NVIDIA GPUs)

8. Click Launch to provision your new notebook server.

9. Wait for your notebook server to be fully provisioned. This can take several minutes if you have never
provisioned a server using the Docker image that you specified in step 4 because the image needs to
be downloaded. When your server has been fully provisioned, you see a green checkmark graphic in
the Status column on the Jupyter Notebook server administration page.

{7 Kubeflow Central Dashboard X +

£ A NotSecure | 10.61.218.131:3

= :E.' Kubeflow ® kubeflow-anonymous ~
Notebook Servers + NEW SERVER
Status Name Age Image CPU Memory Volumes
Q mike 12minsagoe tensorflow-1.13.1-notebook-cpu:v0.5.0 0.5 1.0Gi : CONNECT 'i

10. Click Connect to connect to your new server's web interface.

11. Confirm that the dataset volume that was specified in step 6 is mounted on the server. Note that this
volume is mounted within the default workspace by default. From the perspective of the user, this is
just another folder within the workspace. The user, who is likely a data scientist and not an
infrastructure expert, does not need to possess any storage expertise in order to use this volume.

28 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Central Dashboard X Home

£ ® NotSecure | 10.61.218.131:3138 Ik v-anonymous/

— Jupyter Quit
Files Running Clusters
Select items to perform actions on them. Upload | New - || &
Jo - | W/ Name ¥ | | Last Modified | | File size
) O data-vol-1 a day ago

L] {f* Kubeflow Central Dashboard data-vol-1/
< C Y @ NotSecure | 10.61.218.131:31380/notebook/kubeflow-anony
— Jupyter Quit
Files Running Clusters
Select items to perform actions on them. Upload | New - ||
1o -~ | m/ data-vol-1 Name Last Modified File size
O. seconds ago
7 [blas_folder 2 months ago
) O collected_trace 2 months ago
1 [container 3 months ago
) [dataset 5 hours ago
) O fio_test 3 months ago
) [parabricks 7 months ago
—] L] banking.csv a month ago 4.88 MB

12. Open a terminal and, assuming that a new volume was requested in step 5, execute df -h to
confirm that a new Trident-provisioned persistent volume is mounted as the default workspace.

Note: The default workspace directory is the base directory that you are presented with when you
first access the server’'s web interface. Therefore, any artifacts that the user creates using the
web interface are stored on this Trident-provisioned persistent volume.

29 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard X — data-vol-1/

£+ @ NotSecure | 10.61.218.131:31380/noteb

" Jupyter

Files Running Clusters
Select items to perform actions on them.

0 ~ W/ data-vol-1

[blas_folder

O colle
(3 container
[dataset
0 fio_test

[parabricks

[

banking.csv

Upload | New~ | &

MNotebook:

N + i
ame Python 2 >

Python 3

Other
Text File
Folder
Terminal

5 hours ago

3 months ago
7 months ago

amonth age 4.88 MB

{7 Kubeflow Central Dashboard

Y A NotSecure | 10.61.218.131

" Jupyter

$ df -h
Filesystem
Use% Mounted on
overlay
9% /
tmpfs
0% /dev
tmpfs
0% /sys/fs/cgroup
/dev/sda2

P!
0% /dev/shm
192.168.11.11:/pb_fg_all

100% /home/jovyan/data-vol-1
tmpfs

1% /run/secrets/kubernetes.io/serviceaccount
tmpfs

1% /proc/driver/nvidia

a-persistenced/socket

0% /dev/nvidia5
tmpfs

0% /proc/acpi
tmpfs

0% /proc/secsi
tmpfs

0% /sys/firmware

1

— 10.61.218.131:31380/noteboo

Used Avail

eX:Fle)

64M

252G

X:le)

13. Using the terminal, run nvidia-smi to confirm that the correct number of GPUs were allocated to
the notebook server. In the following example, one GPU has been allocated to the notebook server
as requested in step 7.

30 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard . 380/notebook X

C Y A NotSecure | 10.61.218.131

~ Jupyter

8 nvidia-smi

Persistence-M| Bus-Id
| Fan Temp Perf Pwr:Usage/Cap|

0 Tesla V100-SXM2...
asc PO 46W / 300W OMiB / 32480MiB | Default |
+

\
S +

Create a Snapshot of an ONTAP Volume from Within a Jupyter Notebook

To trigger the creation of a snapshot, from within a Jupyter Notebook, of a NetApp ONTAP volume that is
mounted in the Jupyter Notebook Server’s workspace, perform the following tasks. This operation takes
advantage of the NetApp ONTAP REST APIs and the NetApp ONTAP Python module. For more
information about the REST APIs and the Python module, see the NetApp support site. Note that tasks in
this section only work for volumes that reside on ONTAP storage systems or software-defined instances.

1. Connect to a Jupyter Notebook server's web interface. See the section “Provision a Jupyter Notebook
Workspace for Data Scientist or Developer Use" for instructions on how to provision a Jupyter
Notebook Server.

2. Open an existing Python 3 notebook or create a new Python 3 notebook. The following example
shows the creation of a new Python 3 notebook.

— Home X +
& C Y @© NotSecure | 192.168.245.202
_ Jupyter Quit
Files Running Clusters
Select items to perform actions on them. Upload =
Natsbaok
~ B/ 1
0 Name ¥ Python 3 3
O dataset-vol
Other
& Snapshot_backup.ipynb Text File kB
Folder
Terminal

3. Add the following content to the Notebook, update variable values as stated in the comments, and
then run all cells. Alternatively, an example Jupyter Notebook containing this content can be
downloaded from NetApp’s Kubeflow and Jupyter Examples GitHub repository.

31 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://library.netapp.com/ecmdocs/ECMLP2858435/html/index.html
https://github.com/NetApp/kubeflow_jupyter_pipeline

L] {7 Kubeflow Central Dashboard X Home Page - Selec eate . X Snapshat - Jupyter Notebook

C {t @ NotSecure | 10.61.188.111 fr @ a
: Jupyter Snapshot Last Checkpoint: Last Wednesday at 4:15 AM (autosaved) ﬂ
File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O

B+ = @@ B 4+ ¥ MRun B C W | Markdown =

Create NetApp Snapshot within Jupyter Notebook

This playbook demonstrates how to trigger the creation of a snapshot of a NetApp volume from within a Jupyter Notebook

Install netapp_ontap module

In [1]: %pip install --user netapp_ontap

Requirement already satisfied: netapp_ontap in ./.local/lib/python3.6/site-packages (9.7.0)
Requirement already satisfied: requests>=2.21.0 in /usr/local/lib/python3.6/dist-packages (fr
om netapp ontap) (2.22.0)

Requirement already satisfied: marshmallow>=3.2.1 in ./.local/lib/python3.6/site-packages (fr
om netapp ontap) (3.4.0)

Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /fusr/local/lib/pyth
onl.6/dist-packages (from requests>=2.21.0->netapp_ontap) (1.24.3)

Requirement already satisfied: idna<2.9,>=2.5 in /usr/lib/python3/dist-packages (from request
5>=2.21.0->netapp_ontap) (2.6)

Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-package
s (from requests»>=2.21.0->netapp ontap) (3.0.4)

Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages
(from requests>=2.21.0->netapp_ontap) (2019.9.11)

Note: you may need to restart the kernel to use updated packages.

Import needed functions/classes

In [2]: from netapp ontap import config as netappConfig
from netapp ontap.host connection import HostConnection as NetAppHostConnection
from netapp_ontap.resources import Volume, Snapshot
from datetime import datetime
import json

Configure connection to ONTAP cluster/instance

In [3]: ## Enter connection details for your ONTAP cluster/instance
ontapClusterMgmtHostname = '10.61.188.40"
ontapClusterAdminUsername = 'admin'’
ontapClusterAdminPassword = 'NetApp!23'
verifySSLCert = False
##

netappConfig.CONNECTION = NetAppHostConnection(
host = ontapClusterMgmtHostname,
username = ontapClusterAdminUsername,
password = ontapClusterAdminPassword,
verify = verifySSLCert

Convert pv name to ONTAP volume name

In [4]: ## Enter the name of pv for which you are creating a snapshot
Note: To get the name of the pv, you can run “kubectl -n <namespace> get pvc .

#H The name of the pv that corresponds to a given pve can be found in the 'VOLUME'
column.

pvName = 'pve-67213778-6£53-4d9d-96e3-72b0£9bbeadd '

##

The following will not work if you specified a custom storagePrefix when creating your
Trident backend. If you specified a custom storagePrefix, you will need to update this
code to match your prefix.

volumeName = 'trident %s' % pvName.replace("-", "_")

print('pv name: ', pvName)

print('ONTAP volume name: ', volumeName)

pv name: pve-67213778-6f53-4d9d-96e3-72b0f9bbeadd
ONTAP volume name: trident_pvc_67213778_6f53_4d9d_96e3_72b0f9bbead4d

32 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Create snapshot

In [5]: volume = Volume.find(name = volumeName)

timestamp = datetime.today().strftime("%Y¥méd ¥HEMES")

snapshot = Snapshot.from dict({
'name': 'jupyter %s' % timestamp,
'‘comment’: 'Snapshot created from within a Jupyter Notebook',
'volume': volume.to_dict()

H

response = snapshot.post()

print("API Response:")

print(response.http_response.text)

BAPI Response:
{

"uuid": "ea754776-49ba-1lea-8B196-d039eal6490a",

"description”: "POST /api/storage/volumes/l4a07f2d-468e-1lea-808d-d03%ea06439f/snapshots/?n
ame=jupyter 20200207_200323",

"state": "success",

"message": "success",

"code": 0,

"start ti "2020-02-07T15:02:53400:00",
"end time": "2020-02-07T15:02:53+00:00",
" links": {

"self": {

"href": "/api/cluster/jobs/ea754776-49ba-11lea-8196-d03%eal6490a"
}
}
}

Optional: Retrieve details for newly created snapshot

In [6]: snapshot.get()
print(json.dumps(snapshot.to dict(), indent=2))

{
"sym": {
"uuid": "e6121682-3224-1lea-8196-d039ealé&d90a”,
"name": "ai22l_data",

" links": {
"self": {
"href": "/api/svm/svms/e6121682-3224-1lea-8196-d039eal6490a"
)
}
I
"uuid": "899f336d-166a-426a-alaT-aa349764bbecc",
"volume"

"uuid": "1l4a07f2d-468e-1lea-808d-d039eal6439f",
"name": "trident pve 67213778_6£53_4d9d_96e3_72b0f9bbeadd”,
" links": {
"self": {
"href": "/api/storage/volumes/14a07f2d-468e-1lea-808d-d039ea06439£"
}
}
b
" links": {
"self": {
"href": "/api/storage/volumes/14a07f2d-468e-1lea-808d-d039eal6439f/snapshots/899£336d-1
66a-426a-ala7-aa349764bbcc”
}
b
"create time": "2020-02-07T15:02:53+00:00",
"comment": "Snapshot created from within a Jupyter Notebook",
"name": "jupyter 20200207_200323"

33 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Optional: Retrieve a list of all snapshots that exist for the volume

In [7]: numVolumeSnapshots = 0
for volumeSnapshot in Snapshot.get collection(volume.uuid, max records = 256) :
numVolumeSnapshots+=1
volumeSnapshot.get()
print("Snapshot #%s:" % numVolumeSnapshots)
print(json.dumps (volumeSnapshot.to_dict(), indent=2), "\n")

if numVolumeSnapshots >= 256 1

print("256 snapshots retrieved. More snapshots may exist.")
else :

print("Total Snapshots: %s" % numVolumeSnapshots)

Snapshot #1:
{
"svm":
"uuid": "e6121682-3224-1lea-8196-d039ealfd90a”,
"name": "ai22l_data",

" links": {
"self": {
"href": "/api/svm/svms/e6121682-3224-1lea-8196-d03%ea06490a"
}
}
b
"uuid": "B7698310-8688-4746-8bca-50£87d79e034",
"volume"

"uuid": "14a07f2d-468e-1lea-808d-d039ea06439£",
"name": "trident pve 67213778 6f53 4d9d_96e3_72b0f9bbeadd”,
" links": {

{
: "/api/storage/volumes/14a07f2d-468e-11lea-808d-d039eal6439f"

"href": "/api/storage/volumes/14a07f2d-468e-1lea-808d-d039%eal6439f/snapshots/B7698310-8
688-4746-8bca-50£87d79e034"
}
b
"create_time": "2020-02-04T16:54:04+00:00",
"name": "clone kfp clone 202002.1"

}

Snapshot #2:

{
"sym":
"uuid": "e6121682-3224-1lea-8196-d03%eal6490a",
"name": "ai22l_data",
" links": {
"self": {
"href": "/api/svm/svms/e6121682-3224-1lea-8196-d039eal6490a"
)
}
I
"uuid": "5e754480-73a9-4314-9£07-5£879b1£214£",
"volume":
"uuid": "l4a07f2d-468e-1lea-808d-d039eal&d39f",
"name": "trident_pvec 67213778_6£f53_4d9d_96e3_72b0f9%bbeadd",
" _links": {
"self": {
"href": "/api/storage/volumes/14a07f2d-468e-1lea-808d-d039eal6439f"
}
}
I
" links": {
"self": {

"href": "/api/storage/volumes/14a07f2d-468e-1lea-808d-d039eal6439f/snapshots/5e754480-7
3a9-4314-9f07-5£879b1£214£"
}
b
"create_tim "2020-02-05T09:12:35+00:00",
"comment": "Snapshot created from within a Jupyter Notebook",
"name": "jupyter 20200205 _141259%"

34 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Snapshot #3:
{
"svm": {
"uuid": "e6121682-3224-1lea-8196-d03%eal6490a",
"name": "ai221 data",
" _links": {
"self": {
"href": "/api/svm/svms/e6121682-3224-11lea-B196-d039%ealb490a"
}
}
b
"uuid": "899f336d-166a-426a-alai-aa349764bbcc",
"volume": {
"uuid": "l4a07f2d-468e-1lea-808d-d03%eal6d439f",
"name": "trident pve 67213778 6f53 4d9d 96e3_72b0f9bbeadd”,
" _links": {
"self": {
"href": "/api/storage/volumes/14a07f2d-468e-1lea-808d-d039eal6439f"
}
}
b
" _links": {
"self": {
"href": "/api/storage/volumes/14a07f2d-468e-11lea-808d-d039eal6439f/snapshots/899f336d-1
66a-426a-ala7-aa349764bbcc"
}
b
"create time": "2020-02-07T15:02:53+00:00",
"comment": "Snapshot created from within a Jupyter Notebook",
"name": "jupyter 20200207 _200323"
}

Total Snapshots: 3

Trigger a Cloud Sync Replication Update from Within a Jupyter Notebook

From directly within a Jupyter Notebook, you can trigger the replication of data to and from a variety of file
and object storage platforms by using NetApp Cloud Sync replication technology. Potential use cases
include:

Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AI/ML model training or retraining.

Replicating a newly trained or newly-updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the
training of an AI/ML model.

Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance Al/ML
training environment for use in the training of an Al/ML model.

Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage.

Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance
AI/ML training environment for use in the training of an AlI/ML model.

To trigger a Cloud Sync replication update from within a Jupyter Notebook, perform the following tasks:

Note: Before you perform the exercises that are outlined in this section, we assume that you have

already initiated the Cloud Sync relationship that you wish to trigger an update for. To initiate a
relationship, visit cloudsync.netapp.com.

1. Connect to a Jupyter Notebook server’s web interface. For instructions on how to provision a Jupyter

35

Notebook server, see the section “Provision a Jupyter Notebook Workspace for Data Scientist or
Developer Use.”.

Open an existing Python 3 notebook or create a new Python 3 notebook. The following example
shows the creation of a new Python 3 notebook.

NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

http://cloudsync.netapp.com/

Home X 4

C {t @ NotSecure | 192.168.245.202

: Jupyter Quit
Files Running Clusters
Select items to perform actions on them. Upload =
. Notsbook:
0o - B/ Namedr_ Python 3 e
— O dataset-vol
Other:
& Snapshot_backup.ipynb Text File kB
Folder
Terminal

3. Add the following content to the Notebook, update variable values as stated in the instructions, and
then run all cells. Alternatively, an example Jupyter Notebook containing this content can be
downloaded from NetApp’s Kubeflow and Jupyter Examples GitHub repository.

® ® 7 Kubeflow Central Dashboard X Home Page - Selector create . X & Cloud-Sync - Jupyter Noteboo X =+
C ¥ A NotSecure | 10.61.188.111 it @ oa - . 9 @ B/ :;,’
" Jupyter Cloud-Sync Lastc int: 5 hours ago (at d) (ol
File Edit View Insert Cell Kernel Widgets Help Trusted Python3 QO
B + %= @ 0B 4+ ¥ MARun B C W code v =

Trigger Cloud Sync Replication within Jupyter Notebook

This playbook demonstrates how to trigger a NetApp Cloud Sync update from within a Jupyter Notebook

Import needed modules

In [1]: import requests, json, time

Define classes and functions
First, we define a class for a new error type. Errors of this type will be raised when an API resposne is not as expected

In [2]: ## API response error class;
objects of this class will be raised when an API resposne is not as expected
class APIResponseError(Exception) :
'''Error that will be raised when an API response is not as expected'''
pass

Next, we define generic function for printing an API response

In (3]: ## Ceneric function for printing an API response
def printAPIResponse(response: requests.Response) :
print({"API Response:")
print("Status Code: ", response.status_code)
print("Header: ", response.headers)
if response.text :
print("Body: ", response.text)

Next, we define a function for obtaining our Cloud Sync API access token and account ID. The access token and account ID
will be needed in order to call the Cloud Sync API to trigger the replication update.

36 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://github.com/NetApp/kubeflow_jupyter_pipeline

In [4]: ## Function for obtaining access token and account ID for calling Cloud Sync API
def netappCloudSyncAuth(refreshToken: str) :
Step 1: Obtain limited time access token using refresh token

Define parameters for API call
url = "https://netapp-cloud-account.auth0.com/ocauth/token"
headers = {

"Content-Type": "application/json"

}
data = {

"grant_type": "refresh_ token",

"refresh_token": refreshToken,

"client_id": "MuOV1lywg¥teIéwlMbD15fKEVIUrNXGWC"
}

call API to optain access token
response = requests.post(url = url, headers = headers, data = json.dumps(data))

Parse response to retrieve access token

tey =
responseBody = json.loads(response.text)
ssTok = respc y["access_token"]
except :

errorMessage = "Error obtaining access token from Cloud Sync API"
raise APIResponseError(errorMessage, response)

Step 2: Obtain account ID

Define parameters for API call
url = "https://cloudsync.netapp.com/api/accounts”
headers = {
“Content-Type": "application/json",
"Ruthorization": "Bearer " + accessToken

}

Call API to obtain account ID
response = requests.get(url = url, headers = headers)

Parse response to retrieve account ID
tey :
responseBody = json.loads(response.text)
accountId = responseBody[0]["accountId"]
except @
errorMessage = "Error obtaining account ID from Cloud Sync API"
raise APIResponseError(errorMessage, response)

Return access token and account ID
return accessToken, accountId

Next, we define a function for actually triggering the Cloud Sync update

In [S]): ## Function for triggering an update for a specific Cloud Sync relationship

def t Cl Yy (refr : str, relationshipId: str, printResponse: bool = True) :
Step 1: Obtain access token and account ID for accessing Cloud Sync API
try
Id = netappCl y (refr = ref)

’
except APIResponseError as err:
if printResponse :
errorMessage = err.args(0]
response = err.args[l]
print(errorMessage)
printAPIResponse(response)
raise

Step 2: Trigger Cloud Sync update

Define parameters for API call
url = "https://cloudsync.netapp.com/api/relationships/%s/sync" % (relationshipId)
headers = {

"Content-Type": "application/json",

"Accept”: "application/json",

"x-account-id": accountIld,

"Authorization": "Bearer " + accessToken

}

Call API to trigger update
response = requests.put(url = url, headers = headers)

Check for API response status code of 202; if not 202, raise error
if response.status_code != 202 :

errorMessage = "Error calling Cloud Sync API to trigger update."
if printResponse :

print(errorMessage)

printAPIResponse(response)
raise API ror(error P 5)

Print API response

if printResponse :
print("Note: Status Code 202 denotes that update was successfully triggered.")
printAPIResponse(response)

37

NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

Lastly, we define a function for monitoring the progress of the latest replication update

In [6]: ## Function for monitoring the progress of the latest update for a specific Cloud Sync
relationship
def netappCloudSyncMonitor(refreshToken: str, relationshipIld: str,
keepCheckingUntilComplete: bool = True, printProgress: bool = True,
printResponses: bool = False) :
Step 1: Obtain access token and account ID for accessing Cloud Sync APT
tey 3
accessToken, accountId = netappCloudSyncAuth(refreshToken = refreshToken)
except APIResponseError as err:
if printResponse :
errorMessage = err.args[0]
response = err.args[l]
print(errorMessage)
printAPIResponse(response)
raise

Step 2: Obtain status of the latest update;
optionally, keep checking until the latest update has completed

while True :
Define parameters for API call
url = "https://cloudsync.netapp.com/api/relationships-v2/%s" % (relationshipId)
headers = {

"Accept": "application/json”,
"X-account-id": accountld,
"Buthorization"”: "Bearer " + accessToken

}

Call API to obtain status of latest update
response = requests.get(url = url, headers = headers)

Print API response
if printResponses :
printAPIResponse (response)

Parse response to retrieve status of latest update

try :
responseBody = json.loads(response.text)
latestActivityType = responseBody["activity"]["type"]
latestActivityStatus = responseBody["activity"]["status"]

except :
errorMessage = "Error status of latest update from Cloud Sync API"
raise APIResp ror(error , response)

End execution if the latest update is complete
if latestActivityType == "Sync” and latestActivityStatus == "DONE" :
if printProgress :
print("Success: Cloud Sync update is complete.")
break

Print message re: progress
if printProgress :
print("Cloud Sync update is not yet complete.")

End execution if calling program doesn't want to monitor until the latest update
has completed
if not keepCheckingUntilComplete :

break

Sleep for 60 seconds before checking progress again

print("Checking again in 60 seconds...")
time.sleep(60)

Set Cloud Sync refresh token

A refresh token is needed in order to obtain an access token. If you do not yet have a refresh token, you can create one here:
https://services.cloud.netapp.com/refresh-token.

In [7]: refreshToken = "<enter your refresh token>"

Optional: obtain Cloud Sync relationship ID

If you do not already know the relationship ID for the specific Cloud Sync relationship that you wish to trigger an update for,
then you must obtain it. In order to do this, we define a function for obtaining a list of all Cloud Sync relationships that are tied
to our account.

If you already know the relationship id for the specific relationship that you wish to trigger an update for, then you can skip this
section

38 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

In [8]: def netappCloudSyncGetRelationships(refreshToken: str, printResponse: bool = True)
Step 1: Obtain access token and account ID for accessing Cloud Sync API
try :

accessToken, accountId = netappCloudSyncAuth(refreshToken = refreshToken)
except APIResponseError as err:
if printResponse :
errorMessage = err.args[0]
response = err.args[l]
print(errorMessage)
printAPIResponse (response)
raise

Step 2: Retrieve list of relationships

Define parameters for API call
url = "https://cloudsync.netapp.com/api/relationships-v2"
headers = {
"Accept": "application/json”,
"x-account-id": accountld,
"Authorization": "Bearer " + accessToken

}

Call API to retrieve list of relationships
response = requests.get(url = url, headers = headers)

Check for API response status code of 200; if not 200, raise error
if response.status_code != 200 :
errorMessage = "Error calling Cloud Sync API to retrieve list of relaticnships."”
if printResponse :
print(errorMessage)
printAPIResponse (response)
raise APIResponseError(errorMessage, response)

Print API response

if printResponse :
print("API Response:")
print(“Note: Status Code 200 denotes success.")
print("Status Code: ", response.status_code)
print("Header: ", response.headers)
print("Body: ", response.text)

Return json object containing response body
responseBody = json.loads(response.text)
return responseBody

Now, we wil call the function that we just defined. If you receive an error, try restarting the kernel and running again.

In [9]: relationships = netappCloudSyncGetRelationships(refreshToken = refreshToken)

API Response:
Note: Status Code 200 denotes success.
Status Code: 200
Header: ({'Date': 'Fri, 29 May 2020 19:23:15 GMT', 'Content-Type': 'application/json; charset
=utf-8', 'Transfer-Encoding': 'chunked', 'Connection': 'keep-alive', 'X-DNS-Prefetch-Contro
1': 'off', 'Strict-Transport-Security': 'max-age=15552000; includeSubDomains', 'X-Download-Op
tions': 'noopen', 'X-Content-Type-Options': 'nosniff', 'X-XSS-Protection': 'l; mode=block',
'X-DFIO-Reg-Id': '16b50864-666f-4e73-a74e-9d6e525137£5', 'Access-Control-Allow-Origin': '=*',
'ETag': 'W/"bdf-w7B1lrNO+gXeBim4ZLbHJoM2pyiA"', 'Vary': 'Accept-Encoding', 'Content-Encoding':
‘gzip'}
Body: [{"isQstack":false,"isCvo":false,"isCm":false,"phase":"Sync","source":{ " "protocol”:"nf
s","nfs":{"host":"192.168.200.41", "export":"/trident_pvc_lb3d8alc_b3d5_4a3a_a767_a936dfe5287
1","path":"","version":"3", "provider":"nfs"}}, "target":{"protocol”:"nfs", "nfs":{"host":"192.1
68.200.41","export":"/trident_pvc_0361la52b_9£65_4adc_9092_aafeb602a809","path” . "versio
n":"3","provider”:"nfs"}}, "settings":{"gracePeriod":30, "deleteOnSource” :false, "deleteOnTarge
t":false, "objectTagging”:true, "retries":3,"copyAcl”:false,"files":{"excludeExtensions":[], "ma
x5ize":9007199254740991, "minSize":0, "minDate":"1970-01-01", "maxDate"” :null}, "fileTypes":{"file
s":true, "directories”:true, "symlinks":true}, "schedule":{"syncInDays":1,"syncInHours":0,"syncI
nMinutes":0,"isEnabled":false, "syncWhenCreated" :true, "nextTim "2020-05-29T18:00:00.000
2"}},"dataBroker":{"lastPing":{"wasabi":1590780193457}, "type": "ONPREM", "name" : "ailab01", "grou
pId":"5ea35f9fac30c3972da9£533", "createdAt” :1587765162950, "transferRate":1049.21968787515, "up
dateNewVersion":true,"id":"S5ea35£9£94465a000a7c9fe3", "placement"” : { "hostname" : "ubuntulg804", "pl
", "privatelp +3.0.17118-85c1lcf2-production”, o
"Linux","release":"4.15.0-96-generic", "16819924992","node":"14.0.0", "cpu
4","processMaxMem":"78729216"}, "status”: "COMPLETE", "fileLink": "https://cf.cloudsync.netap
p.com/5ea35£9£94465a000a7c9fc3_installer"}, "group”:{"dataBrokers":[{"lastPing":{"wasabi":1590
780193457}, "type”: "ONPREM", "name":"ailab01", "groupId”:"5ea35f9fac30c3972da9f533", "createdAt”:
1587765162950, "transferRate"”:1049.21968787515, "updateNewVersion" :true, "id" ea35f9f94465a000
a7c9fec3”, "placement” : {"hostname": "ubuntul804", "platform”:"linux", "privateIp":"10.61.188.11
4", "version":"1.3.0.17118-85clcf2-production”,"os": "Linux", "release":"4.15.0-96-generic", "osT
otalMem":"16819924992","node":"14.0.0","cpus":"4", "processMaxMem":"78729216"}, "status" : "COMPL
ETE", "fileLink":"https://cf.cloudsync.netapp.com/5ea35f9f94465a000a7c9fc3_installer”}], "nam
e":"ailab01", "createdAt":"2020-04-24T21:52:31.2582","id": "5ea35f9fac30c3972da9£533"}, "startTi
me":"2020-05-29T19:17:10.9662", "createdAt"”:1590692247835, "endTime":"2020-05-29T19:19:22.084
2","id":"5ed00996caB5650009a83db2", "relationshipId": "5ed00996ca85650009a83db2", "activity": {"t
Sync","status":"DONE","failureMessage":"", "executionTime":131118,"startTime":"2020-05-2
7:10.9662", "endTime":"2020-05-29T19:19:22.0842", "bytesMarkedForCopy":0, "filesMarkedForC
;"dirsMarkedForCopy":0,"filesCopied":0, "bytesCopied":0,"dirsCopied":0,"filesFailed":
0, "bytesFailed":0,"dirsFailed":0,"filesMarkedforRemove":0, "bytesMarkedForRemove":0, "dirsMarke
dFor " il ed":0, "bytes d":0,"dirs d":0, "bytesR dFailed":0,"files
RemovedFailed":0, "filesMarkedForGrac 0, "bytesMarkedForGrace":0, "dirsMarkedForGrace":0,"file
sMarkedForIgnore":0,"dirsScanned":2,"filesScanned":1,"dirsFailedToScan":0, "bytesScanned":0,"p
rogress":100, "lastMessageTime":"2020-05-29T19:19:22.1072", "topFiveMostCommonRelationshipError
s":[1}}]

39 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Now, we will print out the list of relationships. Identify the specific relationship in this list that you wish to trigger an update for,
and note the relationship id. You will need to enter this relationships id in the next section. If you have multiple relationship set
up for the same source and destination, then you will want to change 'printFullDetails' to True.

In [10]: printFullDetails = False

numRelationships = 0
for relationship in relationships :
numRelationships+=1
print("-- Relationship #", numRelationships, "--\n")
if printFullDetails:
print(json.dumps(relationship, indent=2), "\n")

else :
print("id: ", relationship["id"])
print("source: ", json.dumps(relationship["scurce"], indent=2))
print(“"target: ", json.dumps(relationship["target"”], indent=2), "\n")

-- Relationship # 1 --

id: 5ed00996caB5650009a83db2
source: {
"protocol”: "nfs",
"nfs":
"host": "192.168.200.41",
"/trident_pvc_lb3dBalc_b3d5_4a3a_a767_a%36dfe52871",

"version":

r
"provider": "nfs"
}
}
target: {
"protocol”: "nfs",
"nfs": {
“host": "192.168.200.41",
"/trident_pvc_0361a52b_9£65_dadc_9092_aafeb602a809",
’
nge,
s "nfs”
1
}

Set Cloud Sync relationship id
Note: this is the same relationship id that we just retrieved in the previous section.

In [11]: relationshipId = "5ed00996caB5650009a83db2"

Trigger Cloud Sync update

Lastly, we will call the function that we defined above to trigger an update for our specified Cloud Sync relationship. If you
receive an error, try restarting the kernel and running again.

In [12]: netappCloudSyncUpdate(refreshToken = refreshToken, relationshipId = relationshipId)
Note: Status Code 202 denotes that update was successfully triggered.

API Response:
Status Code: 202

Header: ({'Date': 'Fri, 29 May 2020 19:23:17 GMT', 'Content-Type': 'application/json; charset
=utf-8', 'Transfer-Encoding': 'chunked', 'Connection': 'keep-alive', 'X-DNS-Prefetch-Contro
1': 'off', 'Strict-Transport-Security': 'max-age=15552000; includeSubDomains', 'X-Download-Op
tions': 'noopen', 'X-Content-Type-Options': 'nosniff', 'X-XSS-Protection': 'l; mode=block',

'X-DFI0-Reg-Id': 'fcfl9bde-9all-42f0-8dbc-18leb242ee73’, 'Access-Control-Allow-Origin’: '*°,
'Vary': 'Accept-Encoding'}

Check Cloud Sync progress

In [13]: netappCloudSyncMonitor (refreshToken = refreshToken, relationshipId = relationshipld,
keepCheckingUntilComplete = True)

Cloud Sync update is not yet complete.
Checking again in 60 seconds...
Cloud Sync update is not yet complete.
Checking again in 60 seconds...
Success: Cloud Sync update is complete.

Create a Kubeflow Pipeline to Execute an End-to-End Al Training Workflow with
Built-in Traceability and Versioning

To define and execute a new Kubeflow Pipeline that takes advantage of NetApp Snapshot technology in
order to integrate rapid and efficient dataset and model versioning and traceability into an end-to-end
AI/ML model training workflow, perform the following tasks. For more information about Kubeflow

40 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

pipelines, see the official Kubeflow documentation. Note that the example pipeline that is shown in this
section only works with volumes that reside on ONTAP storage systems or software-defined instances.

1. Create a Kubernetes secret containing the username and password of the cluster admin account for
the ONTAP cluster on which your volumes reside. This secret must be created in the kubeflow
namespace because this is the namespace that pipelines are executed in. Note that you must replace
username and password with your username and password when executing these commands, and
you must use the output of the base64 commands (see highlighted text) in your secret definition

accordingly.
$ echo -n 'username' | base64
dXN1lcm5hbWU=
$ echo -n 'password' | base64
cGFzc3dvemQ=

$ cat << EOF > ./secret-ontap-cluster-mgmt-account.yaml
apiVersion: vl
kind: Secret
metadata:
name: ontap-cluster-mgmt-account
namespace: kubeflow
data:
username: dXNlcm5hbWU=
password: cGFzc3dvcmQ=
EOF
$ kubectl create -f ./secret-ontap-cluster-mgmt-account.yaml
secret/ontap-cluster-mgmt-account created

2. If the volume containing the data that you plan to use to train your model is not tied to a PVC in the
kube f1ow hamespace, then you must import this volume into that namespace. Use the Trident
volume import functionality to import this volume. The volume must be imported into the kubeflow
namespace because this is the namespace that pipelines are executed in.

If your dataset volume is already tied to a PVC in the kubef1ow hamespace, then you can skip this
step. If you do not yet have a dataset volume, then you must provision one and then transfer your
data to it. See the section “Provision a New Volume” for an example showing how to provision a new
volume with Trident.

The example commands that follow show the importing of an existing FlexVol volume, named
dataset vol, into the kubeflow namespace. For more information about PVCs, see the official
Kubernetes documentation. For more information about the volume import functionality, see the
Trident documentation. For a detailed example showing the importing of a volume using Trident, see
the section “Import an Existing Volume.”

$ cat << EOF > ./pvc-import-dataset-vol-kubeflow.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: dataset-vol

namespace: kubeflow
spec:

accessModes:

- ReadWriteMany

storageClassName: ontap-ai-flexvols-retain
EOF
$ tridentctl import volume ontap-ai-flexvols dataset vol -f ./pvc-import-dataset-vol-
kubeflow.yaml -n trident

- fomm - o fom o
———————————————————————————————— BT s

| NAME | SIZE | STORAGE CLASS | PROTOCOL |
BACKEND UUID | STATE | MANAGED |

B T T fomm - o fom - o
———————————————————————————————— R T s

| pvc-3c70adl4-d88f-11e9-b5e2-00505681£f3d9 | 10 TiB | ontap-ai-flexvols-retain | file |
2942d386-afcf-462e-bf89-1d2aa3376a7b | online | true |

$ kubectl get pvc -n kubeflow

41 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/

NAME STATUS
CAPACITY ACCESS MODES STORAGECLASS
imagenet-benchmark-job-gblgg-kfpresults Bound
RWX ontap-ai-flexvols-retain 2d1%h
katib-mysqgl Bound
10G1i RWO ontap-ai-flexvols-retain
dataset-vol Bound
10T1 ROX ontap-ai-flexvols-retain
metadata-mysqgl Bound
10G1i RWO ontap-ai-flexvols-retain
minio-pv-claim Bound
20G1 RWO ontap-ai-flexvols-retain
mysgl-pv-claim Bound

VOLUME
AGE
pvc-a4e32212-d65¢c-11e9-a043-00505681a82d 1Gi
pvc-b07£293e-d028-11e9-9b9d-00505681a82d
10d
pvc-43b12235-f32e-4dc4-a7b8-88e90d935al2
8s
pvc-b0£3£032-d028-11e9-9b9d-00505681a82d
10d
pvc-b22727ee-d028-11e9-9b9d-00505681a82d
10d
pvc-b2429afd-d028-11e9-9p9d-00505681a82d

20G1i RWO ontap-ai-flexvols-retain 10d

3. If the volume on which you wish to store your trained model is not tied to a PVC in the kubeflow
namespace, then you must import this volume into that namespace. Use the Trident volume import
functionality to import this volume. The volume must be imported into the kube f1ow namespace

because this is the namespace that pipelines are executed in.

If your trained model volume is already tied to a PVC in the kubeflow namespace, then you can skip
this step. If you do not yet have a trained model volume, then you must provision one. See the
section “Provision a New Volume” for an example showing how to provision a new volume with
Trident.

The example commands that follow show the importing of an existing FlexVol volume, named

kfp model vol, into the kubeflow namespace. For more information about PVCs, see the official
Kubernetes documentation. For more information about the volume import functionality, see the
Trident documentation. For a detailed example showing the importing of a volume using Trident, see
the section “Import an Existing Volume.”

$ cat << EOF > ./pvc-import-dataset-vol-kubeflow.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: kfp-model-vol

namespace: kubeflow
spec:

accessModes:

- ReadWriteMany

storageClassName:
EOF
$ tridentctl import volume ontap-ai-flexvols kfp model vol -f ./pvc-import-kfp-model-vol-
kubeflow.yaml -n trident

ontap-ai-flexvols-retain

S L e frmmmm———— e e L B L EE PP L L P e el fmmm———
———————————————————————————————— e et &

| NAME | SIZE | STORAGE CLASS | PROTOCOL |
BACKEND UUID | STATE | MANAGED |

S L e frmmmm———— e e L B L EE PP L L P e el fmmm———
———————————————————————————————— e et &

| pvc-3c70adl14-d88f-11e9-b5e2-00505681£f3d9 | 10 TiB | ontap-ai-flexvols-retain | file |
2942d386-afcf-462e-bf89-1d2aa3376a7b | online | true |

S e e il frmmmm———— e e L B L EE PP L L P e el fmmm———
———————————————————————————————— e D

$ kubectl get pvc -n kubeflow

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

imagenet-benchmark-job-gblgg-kfpresults Bound pvc-ad4e32212-d65c-11e9-a043-00505681a82d 1Gi

RWX ontap-ai-flexvols-retain 2d1%h
katib-mysgl Bound pvc-b07£293e-d028-11e9-9b9d-00505681a82d
10G1 RWO ontap-ai-flexvols-retain 10d
kfp-model-vol Bound pvc-236e893b-63b4-40d3-963b-e70909b2816b
10Ti ROX ontap-ai-flexvols-retain 8s
metadata-mysqgl Bound pvc-b0£f3f032-d028-11e9-9b9d-00505681a82d
10G1 RWO ontap-ai-flexvols-retain 10d
minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d
20G1i RWO ontap-ai-flexvols-retain 10d
42 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/

\mysql—pv—claim Bound pvc-b2429afd-d028-11e9-9b9d-00505681a82d
‘ZOGi

RWO ontap-ai-flexvols-retain 10d

4,

If you have not already done so, you must install the Kubeflow Pipelines SDK. See the official
Kubeflow documentation for installation instructions.

Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands
that follow show the creation of a pipeline definition script for a pipeline that accepts the following
parameters at run-time and then executes the following steps. Modify the pipeline definition script as
needed depending on your specific process.

Run-time parameters:

43

ontap cluster mgmt hostname: The host name or IP address of the ONTAP cluster on
which your dataset and model volumes are stored.

ontap cluster admin acct k8s secret:the name of the Kubernetes secret that was
created in step 1.

ontap verify ssl cert:Denotes whether to verify your cluster's SSL certificate when
communicating with the ONTAP API (true/false).

dataset volume pvc existing: The name of the Kubernetes PersistentVolumeClaim (PVC)
in the kubeflow namespace that is tied to the volume that contains the data that you want to use
to train your model.

dataset volume pv existing:the name of the Kubernetes PersistentVolume (PV) object
that corresponds to the dataset volume PVC. To get the name of the PV, you can run kubectl
-n kubeflow get pvc. The name of the PV that corresponds to a given PVC can be found in
the VOLUME column.

trained model volume pvc existing: The name of the Kubernetes
PersistentVolumeClaim (PVC) in the kube f1ow namespace that is tied to the volume on which
you want to store your trained model.

trained model volume pv_existing: The name of the Kubernetes PersistentVolume (PV)
object that corresponds to the trained model volume PVC. To get the name of the PV, you can
run kubectl -n kubeflow get pvec. The name of the PV that corresponds to a given PVC
can be found in the VOLUME column.

execute data prep step yes or no:Denotes whether you wish to execute a data prep
step as part of this particular pipeline execution (yes/no).

data prep step container image: The container image in which you wish to execute your
data prep step.

data prep step command: The command that you want to execute as your data prep step.
data prep step dataset volume mountpoint: The mountpoint at which you want to
mount your dataset volume for your data prep step.

train step container image: The container image in which you wish to execute your
training step.

train step command: The command that you want to execute as your training step.

train step dataset volume mountpoint: The mountpoint at which you want to mount
your dataset volume for your training step.

train step model volume mountpoint: The mountpoint at which you want to mount your
model volume for your training step.

validation step container image: The container image in which you wish to execute
your validation step.

validation step command: The command that you want to execute as your validation step.

NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/

— wvalidation step dataset volume mountpoint:the mountpoint at which you want to
mount your dataset volume for your validation step.

— wvalidation step model volume mountpoint: The mountpoint at which you want to
mount your model volume for your validation step.

Pipeline steps:

a. Optional: Execute a data prep step.

b. Trigger the creation of a Snapshot copy, using NetApp Snapshot technology, of your dataset
volume.

Note: This Snapshot copy is created for traceability purposes. Each time that this pipeline workflow
is executed, a Snapshot copy is created. Therefore, as long as the Snapshot copy is not
deleted, it is always possible to trace a specific training run back to the exact training dataset
that was used for that run.

c. Execute a training step.

d. Trigger the creation of a Snapshot copy, using NetApp Snapshot technology, of your trained
model volume.

Note: This Snapshot copy is created for versioning purposes. Each time that this pipeline workflow
is executed, a Snapshot copy is created. Therefore, for each individual training run, a read-
only versioned copy of the resulting trained model is automatically saved.

e. Execute a validation step.

$ git clone https://github.com/NetApp/kubeflow jupyter pipeline.git
$ cd kubeflow jupyter pipeline/Pipelines/
$ vi ai-training-run.py

6. Execute the pipeline definition script that you created in step 5 to create a . yaml manifest for your
pipeline.

$ python3 ai-training-run.py
$ 1s ai-training-run.py.yaml
ai-training-run.py.yaml

7. From the Kubeflow central dashboard, click Pipelines in the main menu to navigate to the Kubeflow
Pipelines administration page.

L] {7 Kubeflow Central Dashboard x +

<« C {0 A NotSecure | 10.61.218.131
,'
‘f.‘ Kubeflow $ kubeflow-anonymous ~
-
Dashboard Activity
Quick shortcuts Recent Notebooks Docum
¥ Upload a pipeline = data-val-1 Getting S
Pipelines Accessed 9/12/2019, 8:18:53 PM Get yourr
running ol
4 View all pipeline runs MiniKF
Pipelines A fast and
Recent Pipelines locally
Create a new Notebook server
L A, Microkss
otebook Servers .
o2 imagenet-benchmark Quickly g
Created 9/13/2019, 1:31:43 PM native hyf
4 View Katib Studies

8. Click Upload Pipeline to upload your pipeline definition.

44 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard

Y A NotSecure | 10.61.218.131

— -
= ‘!“ Kubeflow
s + Upload pipeline Refresh
i Pipelines Pipelines ploadplp
« Experiments Filter pipelines
B Archive D Flpeline name Description Uploaded on ¥
|:| [Sample] Basic - ... A pipeline that downloads a message and prints it out. ... 9/5/2019, 6:01:5...
< [] [sample] Basic - ... A pipeline shows how to use dsl.Condition. For source ... 9/5/2019, 6:01:5...
[(sample] Basic- ... A pipeline that downloads two messages in parallel and... 9/5/2019, 6:01:5...
|_| [Bagir A ninealing with enantial ctan Enr urro ~ode v Q/8/2N01Q A-01-5

9. Choose the . yaml manifest for your pipeline that you created in step 6, give your pipeline a name,
and click Upload.

Upload and name your pipeline

@ Upload a file O Import by URL

Choose a pipeline package file from your computer, and give the pipeline a
unique name.
You can also drag and drop the file here.

File*

ai-training-run.py.yam| Choose file

Pipeline name *

ai-training-run

Cancel Upload

10. You should now see your new pipeline in the list of pipelines on the pipeline administration page.
Click your pipeline’s name to view it.

45 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

L {7 Kubeflow Central Dashboard X +

= C {} A NotSecure | 10.61.188.111

= ff: Kubeflow

“a Pipelines Pipelines
« Experiments Filter pipelines
«® Artifacts

Pipeline name Description
P Executions ai-training-run

[Sample] Basic - Exit Handler A pipeline that dowr|

[& | Archive

b0 0 0 O

< lal Bagir . cliti | avaruting A ni i h

hey

11. Review your pipeline to confirm that it looks correct.

L] {7 Kubeflow Central Dashboard X +

<« C {} A NotSecure | 10.61.188.111

= ffq‘ Kubeflow
Pipelines
+3 Pipelines
& ai-training-run
«w Experiments
Graph Source
o® Artifacts
condition-1
P Executions
a Archive data-prep netappsnapshot
<
train-model
netappsnapshot-2
validate-model
46 NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

12. Click Create run to run your pipeline.

7™ Kubeflow Central Dashboard X +

Y A NotSecure | 10.61.188.111

= Q’fq‘ Kubeflow

Pipelines
*i Pipelines + Create experiment Delete

& ai-training-run

« Experiments

Graph Source
«® Artifacts
condition-1
P Executions
B Archive data-prep netappsnapshot
< l

train-model

l

netappsnapshot-2

l

validate-model

13. You are now presented with a screen from which you can start a pipeline run. Create a hame for the
run, enter a description, choose an experiment to file the run under, and choose whether you want to
initiate a one-off run or schedule a recurring run.

47 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard X 4

{Y A NotSecure | 10.61.188.111

ff.‘ Kubeflow

Experiments

Pipelines
& Startarun

Experiments

Run details
Artifacts
al-training-run
Executions funrame!
testrun
Description (optional)
Archive Testing the pipeline.

This run will be associated with the following experiment

Default

Run Type

© One-off O Recurring

Choose

Choose

14. Define parameters for the run, and then click Start. In the following example, the default values are
accepted for most parameters. Details for the volume that was imported into the kubeflow
namespace in step 2 are entered for dataset volume pvc existingand
dataset volume pv_ existing. Details for the volume that was imported into the kubeflow
namespace in step 3 are entered for trained model volume pvc existingand
trained model volume pv_existing. Non-Al-related commands are entered for the
data prep step command, train step command, and validation step command
parameters in order to plainly demonstrate the functionality of the pipeline. Note that you defined the
default values for the parameters within your pipeline definition (see step 5).

Run Type

© One-off o Recurring

Run parameters

Specify parameters required by the pipeline
ontap_cluster_mgmt_hostname
10.61.188.40
ontap_cluster_admin_acct_kBs_secret
ontap-cluster-mgmt-account
ontap_api_verify_ssl_cert
False
dataset volume_pvc_existing
dataset-vol
dataset_volume_pv_existing
pvc-43b12235-f32e-4dc4-a7b8-88e90d?35a12
trained_model_volume_pvc_existing
kfp-model-vol
trained_model_volume_pv_existing

pvc-236e893b-63b4-40d3-963b-e709b9028 160

48

NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

data_prep_step_container_image

ubuntu:bionic

data_prep_step_command
echo "demo data” > /mnt/dataset/demo-data.txt

data_prep_step_dataset_volume_mountpoint

/mnt/dataset

traln_step_container_image

nverio/nvidia/tensorflow:19.12-tf1-py3

train_step_command

cat /mnt/dataset/demo-data.txt && echo "demo model” > /mnt/model/demno-model.txt
train_step_dataset_volume_meuntpaint

/mnt/dataset

train_step_model_volume_mountpoirt

imnt/model

walidation_step_container_image

nverio/nvidia/tensorflow:19.12-tf1-py3

validation command

cat/mnt/modelidemo-model.txt

validation_step_dataset volume_mountpaint

/mnt/dataset

validation_step_mo olume_meuntpaint

imnt/model

m Cancsl
Build commit: ee207f2

15. You are now presented with a screen listing all runs that fall under the specific experiment. Click the
name of the run that you just started to view it.

{7 Kubeflow Central Dashboard ~ x +

{Y A NotSecure | 10.61.188.111

— -
= f’_"o‘ Kubeflow
Experiments
*i Pipelines Refresh
& Default
« Experiments
Recurring run configs Experiment description (]
3 All runs created without specifying an experi...
@ Artifacts O active
Manage
P Executions
+ Create recurring run
Runs
B Archive Filter runs
4 D Run name Status Duration... Pipeline Recurring.. Starttime ¥
[] testrun @ - ai-training-run - 2/11/2020, 3:...
Rows per page: 10 =

49 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

16. At this point, the run is likely still in progress.

L] {7 Kubeflow Central Dashboard

X +

< C {t A NotSecure | 10.61.188.111

= ff'.‘ Kubeflow

P Executlons

B Archive

Experiments > Default

- -
*la Pipelines

& O testrun
« Experiments

Graph Run output Config
«® Artifacts

data-prep @

|

netappsnapshot =

Clone run Terminate Archive

17. Confirm that the run completed successfully. When the run is complete, every stage of the pipeline
shows a green check-mark icon.

® {" Kubeflow Central Dashboard X ar
= C {Y A NotSecure | 10.61.188.111
= :f? Kubeflow
Experiments > Default
2 Pipelines Clone run Archive
& @ testrun
~ Experiments
Graph Run output Config
«? Artifacts
data-prep o
P Executions
=] Archive netappsnapshot o
¢ l
train-model]
netappsnapshot-2 Q
validate-model]
50 NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

18. Click a specific stage, and then click Logs to view output for that stage.

7~ Kubeflow Central Dashboard

C {3 A NotSecure | 10.61.188.111

+

q’f.‘ Kubeflow

Experiments > Default

Clone run Archive
& @ testrun
Experiments
Graph Run output Config
X ai-training-run-qr7xq-1390447418
data-pre
prep Artifacts Input/Output Volumes Manifest Logs
pv name: pvc-43b12235-f32e-4dc4-a7b8-88e90d935a12
ONTAP volume name: trident_pvc_43b12235_f32e_4dc4_a7bs_88e9d
API Response:
Archiwv
e netappsnapshot “uuid": "521f0lab-4ce2-1lea-8196-d039ead6490a"

"_links'
"selfh:
"href": “/api/storage/volumes/7839eade-4cdf-11ea-8194
}
},
) "uuid": "7839eade-4cdf-1lea-8196-d039ead6490a" ,
validate-model "name": "trident_pvc_43b12235_f32e_4dc4_a7bs_88e90d935al
},
"uuid": "267f8c5d-5874-4e4b-91al-a0b9e2a76e07" ,
Ucreate_time": "2020-62-11T15:22:31+00:00",
_links"
nself"
“href": "/api/storage/volumes/7839eade-4cdf-11ea-8196-
(@® Runtime execution graph. Only s

“"description": "POST /api/storage/volumes/7839eade-4cdf-114

“state": “success",

“message "success",
“code": @,
: 12020-02-11T15:22:31+00:00",

“end_time": "2020-02-11T15:22:31+60:00"

“ Links"
train-model chis

l

netappsnapshot-2

"/api/cluster/jobs/521f01ab-4ce2-11ea-8196-d03

Snapshot Details:

“volume": {

51

NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard X =+

C {t A NotSecure | 10.61.188.111

— ff.' Kubeflow

Experiments > Default
& @ testrun
« Experiments
Graph Run output
data-prep

|

netappsnapshot

l

train-model

b

netappsnapshot-2

|

validate-model

(i) Runtime execution graph. Only g

Input/Output Volumes Manifest Logs

Clone run Archive

ai-training-run-gr7xq-1961284282

52 NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard X =+

C {t A NotSecure | 10.61.188.111

— :f.' Kubeflow

Experiments > Default
Clone run Archive
& @ testrun
« Experiments
Graph Run output Config
X ai-training-run-gr7xq-1385150981
data-pre|
prep Artifacts Input/Output Volumes Manifest Logs
pv name: pvc-236e893b-63b4-408d3-963b-eTE9b9b2816b
ONTAP volume name: trident_pvc_236e893b_63b4_40d3_963b_e769H
API Response:
netappsnapshot "yuid": "Sdd8b7dl-4ce3-1lea-808d-dB3%eadE439f",
"description": "POST /api/storage/volumes/7f55bea7-4cdf-114
"state": "success",
"message": "success",
"code": @,
"start_time": "2020-02-11T15:30:80+80:80",
"end_time": "2028- 11T15:30:00+00:08",
. " links": {
train-model

"salfh: {
"href': "/api/cluster/jobs/5dd8b7d1-4ce3-11ea-808d-dB3Y

Iy
}
i
Snapshot Details:
netappsnapshot-2
“"comment": "Snapshot created by a Kubeflow pipeline",
"uuid": "4ee2955c-2f47-4302-a541-3a153dd15f5c",
"yolume": {
"uuid": "7f55bea7-4cdf-1lea-888d-dB3%eaB6439f",
"name": "trident_pvc_236e893b_63b4_40d3_963b_e709b9b2816H

" _links": {
"self"
validate-model "href': "/api/storage/volumes/7f55bea7-4cdf-11ea-888
}
}
h
“create_time": "2020-82-11T15:30:00+00:00",
" _links": {
"self": {
"href": "/api/storage/volumes/7T55bea7-4cdf-11ea=-808d-(
}
i
. "name": "kfp_20260211_2083841",
(i) Runtime execution graph. Only g "eym

53 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

L] 1~ Kubeflow Central Dashboard X -+

= C {t A NotSecure | 10.61.188.111
= ff.' Kubeflow
Experiments > Default
Clone run Archive

& @ testrun
« Experiments

Graph Run output Config

X ai-training-run-gr7xq-2136930686
data-prep Artifacts Input/Output Volumes Manifest Lo s

demo model

|

netappsnapshot

|

train-model

|

netappsnapshot-2

l

validate-model

(i) Runtime execution graph. Only g

Cr

eate a Kubeflow Pipeline to Rapidly Clone a Dataset for a Data Scientist

Workspace

Perform the following tasks to define and execute a new Kubeflow Pipeline that takes advantage of
NetApp FlexClone technology to clone a dataset volume rapidly and efficiently and create a data scientist
or developer workspace. For more information about Kubeflow Pipelines, see the official Kubeflow

documentation.

No

54

te: The example Kubeflow Pipeline that is detailed in this section is not compatible with FlexGroup
volumes. At the time of this writing, FlexGroup volumes must be cloned by using ONTAP System
Manager, the ONTAP CLI, or the ONTAP API, and then imported into the Kubernetes cluster. For
details about importing a volume using Trident, see the section “Import an Existing Volume.”

If you have not already done so, you must install the Kubeflow Pipelines SDK. For installation

instructions, see the official Kubeflow documentation.

Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands
that follow show the creation of a pipeline definition script for a pipeline that accepts the following
parameters at run-time and then executes the following steps. Modify the pipeline definition script as

needed depending on your specific process.

NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/

Run-time parameters:
- workspace name: The name that you want to give to your new workspace.

— dataset volume pvc existing: The name of the Kubernetes PersistentVolumeClaim (PVC)
that corresponds to the dataset volume that you wish to clone.

— dataset volume pvc existing size: The size of the dataset volume that you wish to
clone; for example, 10Gi, 100Gi, or 2Ti.

— trident storage class: The Kubernetes StorageClass that the dataset volume you wish to
clone is associated with.

— Jjupyter namespace: The namespace in which you intend to create a Jupyter Notebook
workspace. For details about creating a Jupyter Notebook workspace, see the section “Provision
a Jupyter Notebook Workspace for Data Scientist or Developer Use.” The dataset clone that this
pipeline creates is mountable in the Jupyter Notebook workspace.

Note: The existing dataset volume PVC that you wish to clone from (the value of the
dataset volume pvc existing parameter) must be in this same namespace.

Pipeline steps:
a. Trigger the creation of a clone, using NetApp FlexClone technology, of your dataset volume.

b. Print instructions for deploying an interactive Jupyter Notebook workspace that has access to the
dataset clone.

$ git clone https://github.com/NetApp/kubeflow jupyter pipeline.git
$ cd kubeflow jupyter pipeline/Pipelines/
$ vi create-data-scientist-workspace.py

3. Execute the pipeline definition script that you created in step 2 to create a . yaml manifest for your
pipeline.

$ python3 create-data-scientist-workspace.py
$ 1ls create-data-scientist-workspace.py.yaml
create-data-scientist-workspace.py.yaml

4. From the Kubeflow central dashboard, click Pipelines in the main menu to navigate to the Kubeflow
Pipelines administration page.

] {7 Kubeflow Central Dashboard % +

< C Y A NotSecure | 10.61.21813

{,;0‘ Kubeflow $ kubeflow-anonymous ~
-

Dashboard Activity
Quick shortcuts Recent Notebooks Docum
4 Upload a pipeline E data-vol-1 Getting S
Pipelines Accessed 9/12/2019, 8:18:53 PM Get your r

running o

4 View all pipeline runs
Pipelines

Recent Pipelines

4' Create a new Notebook server

tebook Servers Microk8s
Motebook Servers .

-3 imagenet-benchmark Quickly g

Created 9/13/2079, 1:31:43 PM native hyy

4 View Katib Studies

5. Click Upload Pipeline to upload your pipeline definition.

55 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard X +

Y A Not Secure | 10.61.218.131

= ffo‘ Kubeflow

3 Pipelines Pipelines + Upload pipeline ~ Refresh

~# Experiments

B Archive [C] Pipeline name Description Uploaded on ¥
[[sample] Basic - ... A pipeline that downloads a message and prints it out. ... 9/5/2018, 6:01:5...
< [[sample] Basic - ... A pipeline shows how to use dsl.Condition. For source ... 9/5/2019, 6:01:5...
|:| [Sample] Basic - ... A pipeline that downloads two messages in parallel and... 9/5/2019, 6:01:5...
|_| L Basgic A ninaling with twy anuantial stong Eor urra rocde F Q/8/2N019 F-N1-5

6. Choose the.yaml file containing your pipeline definition that you created in step 3, give your pipeline
a name, and click Upload.

Upload and name your pipeline

(® Uploadafie () Importby URL

Choose a pipeline package file from your computer, and give the pipeline a
unique name.
You can also drag and drop the file here.

File*

create-data-scientist-workspace.py.yaml Choose file
Pipeline name *

create-data-scientist-workspace

Cancel Upload

7. You should now see your new pipeline in the list of pipelines on the pipeline administration page.
Click your pipeline’s name to view it.

L] {7 Kubeflow Central Dashboard X +

< > C {1 A NotSecure | 10.61.188.111

= ffq‘ Kubeflow

*i Pipelines Pipelines

«w Experiments Filter pipelines
-.. Artifacts
Pipeline name Descrij|

» Executions create-data-scientist-workspace

ai-training-run

noagao

M Archive

I Bacir . Exit Handlar A ning

56 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

8. Review your pipeline to confirm that it looks correct.

L {7 Kubeflow Central Dashboard X +

C @ @ NotSecure | 10.61.188.111

,A
= (F¢ Kubeflow

Pipelines

i Pipelines L
& create-data-scientist-workspace

Graph Source

dataset-clone-for-w...

l

print-instructions

9. Click Create run to run your pipeline.

{7 Kubeflow Central Dashboard X +

C 1 (@ NotSecure | 10.61.188.111

= ffo‘ Kubeflow

& create-data-scientist-workspace

Graph Source

dataset-clone-for-w...

l

print-instructions

Pipelines
*i Pipelines + Create experiment Delete

10. You are now presented with a screen from which you can start a pipeline run. Create a name for the
run, enter a description, select an experiment to file the run under, and select whether you want to

initiate a one-off run or schedule a recurring run.

57 NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard X +

C {Y A NotSecure | 10.61.188.111

ffo‘ Kubeflow

Experiments

Pipelines
& Startarun

Experiments)
Run details

Artifacts
create-data-scientist-workspace
) Run rame *
Executions
test workspace
Description (optional)
Archive Testing the pipeline.

This run will be associated with the following experiment

Default

Run Type

@ One-off O Recurring

Choose

Choose

11. Define parameters for the run, and then click Start. Reference step 2 for details on the individual
parameters.

Run parameters

Specify parameters required by the pipeline
workspace_name
dev
dataset_volume_pve_existing
gold-dataset
dataset_volume_pvc_existing_size
10Gi
storage_class
ontap-flexvol
jupyter_namespace

admin

12. You are now presented with a screen listing all runs that fall under the specific experiment. Click the
name of the run that you just started to view it.

58

NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

{7 Kubeflow Central Dashboard X +

W

C {3 A NotSecure | 10.61.188.111

ff.‘ Kubeflow

Experiments

Pipelines Refresh
& Default
Experiments
Recurring run configs Experiment description]
N All runs created without specifying an experi...
Artifacts 0 active
Manage
Executions
+ Create recurring run
Runs
Archive
D Run name Status Duration... Pipeline Recurring.. Start time ¥
D test workspace (7] - create-data-sc... - 2/12/2020, 3:4...
EI test run o 0:13:07 ai-training-run - 2/11/2020, 3:1..

Rows per page: 10 ~

13. At this point, the run is likely still in progress.

{7 Kubeflow Central Dashboard X +

C {t A NotSecure | 10.61.188.111

7

{f.‘ Kubeflow

Experiments > Default
Pipelines Clone run

& test workspace

Experiments
Graph Run output Config

Artifacts

Executions

Archive

)

Terminate Archive

14. Confirm that the run completed successfully. When the run is complete, every stage of the pipeline
shows a green check-mark icon.

59

NetApp Al Control Plane

© 2020 NetApp, Inc. All Rights Reserved.

o0 7™ Kubeflow Central Dashboard x <+

C @ A NotSecure | 10.61.188.111

= q'f.‘ Kubeflow

Experiments > Default
Clone run Archive

& @ testworkspace

« Experiments

Graph Run output Config
dataset-clone-for...]
print-instructions]

15. Click the dataset-clone-for-workspace stage, and then click Logs to view output for that stage.

o0 4™ Kubeflow Central Dashboard X +

= C @ A NotSecure | 10.61.188.111
— -~
— :!3 Kubeflow
Experiments > Default
Clone run Archive

& @ testworkspace
« Experiments

Graph Run output Config

x create-data-scientist-workspace-8sz4c-2579044814
dataset-clone-for... Artifacts Input/Output Volumes Manifest Logs

time="2020-06-12T20:02: level=info msg="Creating a docker executi
2 time="2020-06-12T20:02: nfo
3 time="2020-06-12T20:02: level=info
1 time="2020-06-12T20:02: level=info kubectl create -f /tmp/m|
.) 5 time="2020-06-12T20:02: level=info dmin/PersistentVolumeCla}
print-instructions time="2020-06-12T20:02: level=info Saving resource output pi

time="2020-06-12T20:02: level=info msg="[kubectl get PersistentVi
time="2020-06-12T20:02: Saved output parameter: |
time="2020-06-12T20:02: [kubectl get PersistentVi
time="2020-06-12T20:02: Saved output parameter:

time="2020-06-12T20:02: level=info Annotating pod with outpi

60 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

16. Click the print-instructions stage, and then click Logs to view the outputted instructions. See
the section “Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use” for details
on creating a Jupyter Notebook workspace.

X create-data-scientist-workspace-8sz4¢-3312647359

Artifacts Input/Output Volumes Manifest Logs

1 To deploy an interactive workspace, provision a new Jupyter workspace in namespace, admin, and mount dataset volume, dataset-workspace-dev.

Create a Kubeflow Pipeline to Trigger a SnapMirror Volume Replication Update

You can define and execute a new Kubeflow pipeline that takes advantage of NetApp SnapMirror data
replication technology to replicate the contents of a volume between different ONTAP clusters.

This pipeline can be used to replicate data of any type between ONTAP clusters that might or might not
be located at different sites or in different regions. Potential use cases include:

¢ Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AlI/ML model training or retraining.

e Replicating a newly trained or newly-updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

For more information about Kubeflow pipelines, see the official Kubeflow documentation. Note that the
example pipeline that is shown in this section only works with volumes that reside on ONTAP storage
systems or software-defined instances.

To create a new Kubeflow pipeline to trigger a SnapMirror volume replication update, perform the
following steps:

Note: Before you perform the exercises that are outlined in this section, we assume that you have
already initiated an asynchronous SnapMirror relationship between the source and the
destination volume according to standard configuration instructions. For details, refer to official
NetApp documentation.

1. If you have not already done so, create a Kubernetes secret containing the username and password
of the cluster admin account for the ONTAP cluster on which your destination volume resides

2. This secret must be created in the kube f1ow hamespace because this is the namespace that
pipelines are executed in. Replace username and password with your username and password
when executing these commands and use the output of the base64 commands (see highlighted text)
in your secret definition accordingly.

$ echo -n 'username' | base64
dXN1lcm5hbWU=
$ echo -n 'password' | base64
cGFzc3dvemQ=

$ cat << EOF > ./secret-ontap-cluster-mgmt-account.yaml
apiVersion: vl
kind: Secret
metadata:
name: ontap-cluster-mgmt-account
namespace: kubeflow
data:
username: dXNlcmShbWU=
password: cGFzc3dvcmQ=
EOF
$ kubectl create -f ./secret-ontap-cluster-mgmt-account.yaml
secret/ontap-cluster-mgmt-account created

3. If you have not already done so, install the Kubeflow Pipelines SDK. See the official Kubeflow
documentation for installation instructions.

61 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://docs.netapp.com/
http://docs.netapp.com/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/

Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands
that follow show the creation of a pipeline definition script for a pipeline that accepts the following
parameters at run-time and then executes the following steps. Modify the pipeline definition script as
needed depending on your specific process.

Pipeline steps:
a. Trigger a replication update for the specified asynchronous SnapMirror relationship.
Run-time parameters:

— ontap cluster mgmt hostname: The host name or IP address of the ONTAP cluster on
which the destination volume resides.

— ontap cluster admin acct k8s_ secret: The name of the Kubernetes secret that was
created in step 1.

— ontap api verify ssl cert: Denotes whether to verify your cluster's SSL certificate when
communicating with the ONTAP API (yes/no).

— source_svm: The name of the SVM on which the source volume resides.

— source volume: The name of the source volume (the volume that you are replicating from) on
the source cluster.

— destination_svm: The name of the SVM on which the destination volume resides.

— destination volume: The name of the destination volume (the volume that you are replicating
to) on the destination cluster.

$ git clone https://github.com/NetApp/kubeflow jupyter pipeline.git
$ cd kubeflow jupyter pipeline/Pipelines/
$ vi replicate-data-snapmirror.py

5.

Execute the pipeline definition script that you created in step 4 to create a . yam1 manifest for your
pipeline.

$ python3 replicate-data-snapmirror.py
$ 1s replicate-data-snapmirror.py.yaml
replicate-data-snapmirror.py.yaml

6.

Follow steps 7 through 18 from the section “Create a Kubeflow Pipeline to Execute an End-to-End Al
Training Workflow with Built-in Traceability and Versioning.”

Be sure to use the . yaml manifest that was created in the previous step (step 5) of this section
instead of the manifest that was created in the section “Create a Kubeflow Pipeline to Execute an
End-to-End Al Training Workflow with Built-in Traceability and Versioning.”

Create a Kubeflow Pipeline to Trigger a Cloud Sync Replication Update

You can define and execute a new Kubeflow pipeline that takes advantage of NetApp Cloud Sync
replication technology to replicate data to and from a variety of file and object storage platforms. Potential
use cases include:

62

Replicating newly-acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for Al/ML model training or retraining.

Replicating a newly-trained or newly-updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the
training of an AI/ML model.

Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance Al/ML
training environment for use in the training of an Al/ML model.

Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage.

NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

e Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance
AI/ML training environment for use in the training of an Al/ML model.

For more information about Kubeflow pipelines, see the official Kubeflow documentation.

Note: The example pipeline that is shown in this section only works with volumes that reside on ONTAP
storage systems or software-defined instances.

To create a new Kubeflow pipeline to trigger a Cloud Sync replication update, perform the following steps:

Note: Before you perform the exercises that are outlined in this section, we assume that you have
already initiated the Cloud Sync relationship that you wish to trigger an update for. To initiate a
relationship, visit cloudsync.netapp.com.

1. Ifyou do not yet have a Cloud Sync API refresh token, access the following URL using your web
browser to create one: https://services.cloud.netapp.com/refresh-token.

2. If you have not already done so, create a Kubernetes secret containing your Cloud Sync API refresh
token. This secret must be created in the kube f1ow hamespace because this is the namespace that
pipelines are executed in. Replace <your refresh token> with your refresh token when
executing these commands and use the output of the base64 command (see highlighted text) in your
secret definition accordingly.

$ echo -n '<your refresh token>' | base64
PHl1vdXIgcmVmcmVzaCB0b2tlbj4=
$ cat << EOF > ./secret-cloud-sync-refresh-token.yaml
apiVersion: vl
kind: Secret
metadata:
name: cloud-sync-refresh-token
namespace: kubeflow
data:
refreshToken: PHlvdXIgcmVmcmVzaCBOb2tlbjd=
EOF
$ kubectl create -f ./secret-cloud-sync-refresh-token.yaml
secret/ secret-cloud-sync-refresh-token created

3. If you have not already done so, install the Kubeflow Pipelines SDK. For installation instructions, see
the official Kubeflow documentation.

4. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands
that follow show the creation of a pipeline definition script for a pipeline that accepts the following
parameters at run-time and then executes the following steps. Modify the pipeline definition script as
needed depending on your specific process.

Pipeline steps:
a. Trigger a replication update for the specified Cloud Sync relationship.
Run-time parameters:

— cloud sync_relationship id: The relationship ID of the Cloud Sync relationship for which
you want to trigger an update. If you do not know the relationship ID, you can retrieve it by using
the Jupyter Notebook that is included in the section “Trigger a Cloud Sync Replication Update
from Within a Jupyter Notebook” or by directly calling the Relationships-v2 API.

— cloud _sync_refresh token k8s_ secret: The name of the Kubernetes secret that was
created in step 2.

$ git clone https://github.com/NetApp/kubeflow jupyter pipeline.git
$ cd kubeflow jupyter pipeline/Pipelines/
$ vi replicate-data-cloud-sync.py

5. Execute the pipeline definition script that you created in step 4 to create a . yaml manifest for your
pipeline

$ python3 replicate-data-cloud-sync.py
$ 1s replicate-data-cloud-sync.py.yaml

63 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://cloudsync.netapp.com/
https://services.cloud.netapp.com/refresh-token
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
https://cloudsync.netapp.com/docs/

‘replicate—data—cloud—sync.py.yaml

6. Follow steps 7 through 18 from the section “Create a Kubeflow Pipeline to Execute an End-to-End Al
Training Workflow with Built-in Traceability and Versioning.”

Be sure to use the . yaml manifest that was created in the previous step (step 5) of this section
instead of the manifest that was created in the section “Create a Kubeflow Pipeline to Execute an
End-to-End Al Training Workflow with Built-in Traceability and Versioning.”

Apache Airflow Deployment
NetApp recommends running Apache Airflow on top of Kubernetes. This section describes the tasks that
you must complete to deploy Airflow in your Kubernetes cluster.

Note: Itis possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on platforms
other than Kubernetes is outside of the scope of this document.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have
already performed the following tasks:
1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in
the section “NetApp Trident Deployment and Configuration.”

Install Helm

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow,
you must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow
the installation instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster.
The Airflow deployment process attempts to provision new persistent volumes using the default
StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment fails.
To designate a default StorageClass within your cluster, follow the instructions outlined in the section “Set
Default Kubernetes StorageClass.” If you have already designated a default StorageClass within your
cluster, then you can skip this step.

Use Helm to Deploy Airflow

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment
jump host:

1. Deploy Airflow using Helm by following the deployment instructions for the official Airflow chart on the
Helm Hub. The example commands that follow show the deployment of Airflow using Helm. Modify,
add, and/or remove values in the custom-values.yaml file as needed depending on your
environment and desired configuration.

$ cat << EOF > custom-values.yaml
FHAH AR
Airflow - Common Configs
FHEF A H A
airflow:
the airflow executor type to use
##

executor: "KubernetesExecutor"

64 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://helm.sh/docs/intro/install/
https://hub.helm.sh/charts/stable/airflow

environment variables for the web/scheduler/worker Pods (for airflow configs)
#4
config:
ATRFLOW KUBERNETES DELETE WORKER PODS: "False"
AIRFLOW _KUBERNETES GIT REPO: "git@github.com:mboglesby/airflow-dev.git"
AIRFLOW__KUBERNETES GIT BRANCH: master
AIRFLOW _KUBERNETES GIT DAGS FOLDER MOUNT POINT: "/opt/airflow/dags"
AIRFLOW KUBERNETES DAGS VOLUME SUBPATH: "repo/"
AIRFLOW _KUBERNETES _GIT_SSH KEY SECRET NAME: "airflow-git-key"
AIRFLOW__KUBERNETES__WORKER CONTAINER REPOSITORY : "apache/airflow"
AIRFLOW__KUBERNETES__WORKER CONTAINER TAG: "1.10.12"
ATRFLOW KUBERNETES RUN AS USER: "5 00o00™
ATRFLOW KUBERNETES LOGS VOLUME CLAIM: " airflow-k8s-exec-logs"

workers:
enabled: false # Celery workers

FHEH A AR A
Airflow - WebUI Configs
FHEF AR
web:
configs for the Service of the web Pods
##
service:
type: NodePort

FHEF R H A A
Airflow - Logs Configs
ifddddtdddddgtaddddddddadtddddadhdii
logs:
persistence:
enabled: true

FHEFF A
Airflow - DAGs Configs
FHEH

dags:
configs for the DAG git repository & sync container
#4#
git:
url of the git repository
#4

url: "git@github.com:mboglesby/airflow-dev.git"
the branch/tag/shal which we clone
#4

ref: master

the name of a pre-created secret containing files for ~/.ssh/

##

NOTE:

- this is ONLY RELEVANT for SSH git repos

- the secret commonly includes files: id rsa, id_rsa.pub, known hosts
- known hosts is NOT NEEDED if “git.sshKeyscan' is true

##

secret: "airflow-git-key-files"

sshKeyscan: true

the name of the private key file in your ‘git.secret’

##

NOTE:

- this is ONLY RELEVANT for PRIVATE SSH git repos
i

privateKeyName: id rsa

the host name of the git repo

##

NOTE:

- this is ONLY REQUIRED for SSH git repos
##

EXAMPLE:

65 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

#4 repoHost: "github.com"
##

repoHost: "github.com"

the port of the git repo

#4#

NOTE:

- this is ONLY REQUIRED for SSH git repos
##

repoPort: 22

configs for the git-sync container

##

gitSync:
enable the git-sync sidecar container
##
enabled: true

the git sync interval in seconds
##
refreshTime: 60
EOF
$ helm install "airflow" stable/airflow --version "7.10.1" --namespace "airflow" --values
./custom-values.yaml
NAME: airflow
LAST DEPLOYED: Mon Oct 5 18:32:11 2020
NAMESPACE: airflow
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Congratulations. You have just deployed Apache Airflow!

1. Get the Airflow Service URL by running these commands:

export NODE PORT=$ (kubectl get --namespace airflow -o jsonpath="{.spec.ports[0].nodePort}"
services airflow-web)

export NODE IP=$ (kubectl get nodes --namespace airflow -o
jsonpath="{.items[0].status.addresses[0] .address}")

echo http://$NODE_IP:$NODE_PORT/

2. Open Airflow in your web browser

2. Confirm that all Airflow pods are up and running.

$ kubectl -n airflow get pod

NAME READY STATUS RESTARTS AGE
airflow-postgresgl-0 1/1 Running 0 38m
airflow-redis-master-0 1/1 Running 0 38m
airflow-scheduler-7fb4bf56cc-g88z4 2/2 Running 2 38m
airflow-web-8f4bdf5fb-hhxr7 2/2 Running 1 38m
airflow-worker-0 2/2 Running 0 38m

3. Obtain the Airflow web service URL by following the instructions that were printed to the console
when you deployed Airflow using Helm in step 1.

$ export NODE PORT=$ (kubectl get --namespace airflow -o jsonpath="{.spec.ports[0].nodePort}"
services airflow-web)

$ export NODE IP=$ (kubectl get nodes --namespace airflow -o
jsonpath="{.items[0].status.addresses[0] .address}")

$ echo http://$NODE_IP:$NODE PORT/

http://10.61.188.112:30366/

4. Confirm that you can access the Airflow web service.

66 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

http://10.61.188.112:30366/

® 0 ® v airtlow-DAGs x o+

&« G O A NotSecure | 10.61.188.112:30366/admin/ ¥ G o m Ao TR

‘JAirﬂow DAGs Data Profiling v Browse v Admin v Docs v About v 2020-10-05 19:17:46 UTC

DAGs
Search:
Last
Run
o DAG Schedule Owner Recent Tasks @ o DAG Runs @ Links

G |POM ai_training_run = NetApp O*EINI=+ECE
G (M8 create_data_scientist_workspace [None | NetApp [ol L A\ F=24—%0]
G |POM example_bash_operator [00" Airflow QPR INA= +=CO
G |PBM example branch dop operator v3 Airflow [ol 1 N1 ¥ X —0]
G |8 example_branch_operator [@dail | Alrflow OPRINI=+ECE
G |PBE example_complex [None | airflow [of L A5 F =3 4—%0]
G | example external task_marker_child = airflow [oL £ NP EFa—

G |FBF example_external_task_marker_parent [None | airflow OPHINIZ=FECO
G |P8® example_http_operator Airflow OPRINA=E + =0
G |PBW example_kubernetes_executor_config = Airflow OF#IiI= =00
G |PBM example_nested branch_dag [@daily | airflow [of 1 N8P X — 0]
G (M8 example_passing_params_via_test_command airflow OPRINA= =0
G |M® example_pig_operator [None | Airflow ol 1 AP EXa—s0]
G |P8M example_python_operator [None | Airflow (ol L A5 FS=4— 0]
G |M8M example_short_circuit_operator Airflow OF % IiI= =00
G |PBM example_skip_dag 1 day, 0:00:00 [JR-Vgi* 0] [of 1 NP X — 0]

Example Apache Airflow Workflows

This section includes example Apache Airflow DAGs that highlight various NetApp data management
capabilities and demonstrate how they can be implemented as part of an Airflow workflow. For more
information on DAGs and for detailed instructions regarding how to define and execute them, refer to the
official Airflow documentation.

Implement an End-to-End Al Training Workflow with Built-in Traceability and
Versioning

The example DAG outlined in this section implements a workflow that takes advantage of NetApp
Snapshot technology to integrate rapid and efficient dataset and model versioning and traceability into an
end-to-end AlI/ML model training workflow.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites:

1. You must have created a connection in Airflow for your ONTAP system.

67 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://airflow.apache.org/docs/stable/

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service Ul.
The example screenshot that follows shows the creation of a connection for a specific ONTAP
system. The following values are required:

— Conn ID. Unigue name for the connection.

— Host. The host name or IP address of the ONTAP cluster on which your dataset and model
volumes are stored.

— Login. Username of the cluster admin account for the ONTAP cluster on which your volumes
reside.

— Password. Password of the cluster admin account for the ONTAP cluster on which your volumes
reside.

® © ® ¥ Admin - Connections - Airflow X 4+

& C' ({+ A NotSecure | 10.61.188.112:30366/admin/connection/new/?url=%2Fadmin%2Fconnection%2F W G O wm Qo @ N ﬂ) H

“:‘Airﬁow DAGs Data Profiling v Browse v Admin v Docs v About v 2020-10-05 19:31:32 UTC

Connection [create]

List Create

Connid * ontap_ai
Conn Type
Host 10.61.188.40
Schema
Login admin
Password =~ seeeeeses
Port

Extra

Save and Add Another Save and Continue Editing

2. There must be an existing PersistentVolumeClaim (PVC) in the airflow hamespace that is tied to
the volume that contains the data that you want to use to train your model.

3. There must be an existing PersistentVolumeClaim (PVC) in the airflow namespace that is tied to
the volume on which you want to store your trained model.

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this
example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS
section to match your environment.

68 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Airflow DAG Definition: AI Training Run

#
#
Steps:

1. Data prep job

2. Dataset snapshot (for traceability)

3. Training job

4. Model snapshot (for versioning/baselining)

5. Inference validation job

from airflow.utils.dates import days ago

from airflow.secrets import get connections

from airflow.models import DAG

from airflow.operators.python operator import PythonOperator

from airflow.contrib.operators.kubernetes pod operator import KubernetesPodOperator
from airflow.contrib.kubernetes.pod import Resources

from airflow.contrib.kubernetes.volume import Volume

from airflow.contrib.kubernetes.volume mount import VolumeMount

#4###4# DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####

Define default args for DAG

ail_training run_dag default_args = {
'owner': 'NetApp'

}

Define DAG details
ai_training run_dag = DAG(
dag_id='ai training run',
default args=ai_ training run dag default args,
schedule interval=None,
start date=days ago(2),
tags=['training']

)

Define volume details (change values as necessary to match your environment)

ONTAP system details

airflowConnectionName = 'ontap ai' # Name of the Airflow connection that contains connection
details for your ONTAP system's cluster admin account

verifySSLCert = False # Denotes whether or not to verify the SSL cert when calling the ONTAP
API

Dataset volume
dataset volume mount = VolumeMount (

'dataset-volume',

mount path='/mnt/dataset’,

sub_path=None,

read only=False
)
dataset volume config= {

'persistentVolumeClaim': {

'claimName': 'dataset-vol'

}
}
dataset volume = Volume (name='dataset-volume', configs=dataset volume config)
dataset volume pv name = 'pvc-79e0855a-30al-4£f63-b34c-1029b1df49f6"

Model volume

model volume mount = VolumeMount (
'model-volume',
mount_path="'/mnt/model",
sub_path=None,
read_only=False

)

model volume config= {
'persistentVolumeClaim': {

'claimName': 'airflow-model-vol'

}

69 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

model volume = Volume (name='model-volume', configs=model volume config)
model volume pv_name = 'pvc-b3e7cb62-2694-45a3-a56d-9fad6bl262e4’

Define job details (change values as needed)

Data prep step

data prep step container image = "ubuntu:bionic"

data prep step command = ["echo", "'No data prep command entered'"] # Replace this echo command
with the data prep command that you wish to execute

data prep step resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to:

{'limit _gpu': 1}

Training step

train step container image = "nvcr.io/nvidia/tensorflow:20.07-tfl-py3"

train step command = ["echo", "'No training command entered'"] # Replace this echo command with
the training command that you wish to execute

train step resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to:

{"limit gpu': 1}

Inference validation step

validate step_container_image = "nvcr.io/nvidia/tensorflow:20.07-tfl-py3"

validate step command = ["echo", "'No inference validation command entered'"] # Replace this echo
command with the inference validation command that you wish to execute

validate step resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to:

{'limit gpu': 1}

FAAEA AR R R R R R R R R R R R

Define function that triggers the creation of a NetApp snapshot
def netappSnapshot (**kwargs) -> str
Parse args
for key, value in kwargs.items () :
if key == 'pvName'
pvName = value
elif key == 'verifySSLCert' :
verifySSLCert = value
elif key == 'airflowConnectionName'
airflowConnectionName = value

Install netapp_ontap package
import sys, subprocess

result = subprocess.check output([sys.executable, '-m', 'pip', 'install', '--user', 'netapp-
ontap'l])
print (str(result).replace('\\n', '\n'))

Import needed functions/classes

from netapp ontap import config as netappConfig

from netapp ontap.host connection import HostConnection as NetAppHostConnection
from netapp ontap.resources import Volume, Snapshot

from datetime import datetime

import json

Retrieve ONTAP cluster admin account details from Airflow connection

connections = get connections(conn_id = airflowConnectionName)

ontapConnection = connections[0] # Assumes that you only have one connection with the
specified conn_id configured in Airflow

ontapClusterAdminUsername = ontapConnection.login

ontapClusterAdminPassword = ontapConnection.password

ontapClusterMgmtHostname = ontapConnection.host

Configure connection to ONTAP cluster/instance
netappConfig.CONNECTION = NetAppHostConnection (
host = ontapClusterMgmtHostname,
username = ontapClusterAdminUsername,
password = ontapClusterAdminPassword,
verify = verifySSLCert
)

Convert pv name to ONTAP volume name
The following will not work if you specified a custom storagePrefix when creating your

70 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Trident backend. If you specified a custom storagePrefix, you will need to update this
code to match your prefix.

)

volumeName = 'trident %s' % pvName.replace("-",
!

print ('\npv name: ', pvName)
print ('ONTAP volume name: ', volumeName)

"oy

Create snapshot; print API response
volume = Volume.find(name = volumeName)
timestamp = datetime.today () .strftime ("$Y%m%d SH%M%S")

snapshot = Snapshot.from dict ({
'name': 'airflow_ %s' % timestamp,
'comment': 'Snapshot created by a Apache Airflow DAG',

'volume': volume.to dict()
}
response = snapshot.post ()
print ("\nAPI Response:")
print (response.http response.text)

Retrieve snapshot details
snapshot.get ()

Convert snapshot details to JSON string and print
snapshotDetails = snapshot.to dict()

print ("\nSnapshot Details:")

print (json.dumps (snapshotDetails, indent=2))

Return name of newly created snapshot
return snapshotDetails['name']

Define DAG steps/workflow
with ai_training run dag as dag :

Define data prep step using Kubernetes Pod operator
(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator)
data_prep = KubernetesPodOperator (
namespace="airflow',
image=data prep step container image,
cmds=data prep step command,
resources = data prep_ step resources,
volumes=[dataset volume, model volume],
volume mounts=[dataset volume mount, model volume mount],
name="ai-training-run-data-prep",
task id="data-prep",
is_delete operator_ pod=True,
hostnetwork=False

)

Define step to take a snapshot of the dataset volume for traceability
dataset snapshot = PythonOperator (
task id='dataset-snapshot',
python callable=netappSnapshot,
op_kwargs={
'airflowConnectionName': airflowConnectionName,
'pvName': dataset volume pv name,
'verifySSLCert': verifySSLCert
}I
dag=dag
)

State that the dataset snapshot should be created after the data prep job completes
data _prep >> dataset_ snapshot

Define training step using Kubernetes Pod operator
(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator)

train = KubernetesPodOperator (

namespace='airflow',

image=train step container image,

cmds=train step_ command,

resources = train_step resources,

volumes=[dataset volume, model volume],

71 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

volume mounts=[dataset volume mount, model volume mount],
name="ai-training-run-train",

task id="train",

is delete operator pod=True,

hostnetwork=False

)

State that training job should be executed after dataset volume snapshot is taken
dataset snapshot >> train

Define step to take a snapshot of the model volume for versioning/baselining
model snapshot = PythonOperator (
task_id='model-snapshot',
python callable=netappSnapshot,
op_kwargs={
'airflowConnectionName': airflowConnectionName,
'pvName': model volume pv name,
'verifySSLCert': verifySSLCert
b
dag=dag
)

State that the model snapshot should be created after the training job completes
train >> model snapshot

Define inference validation step using Kubernetes Pod operator
(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator)
validate = KubernetesPodOperator (
namespace='airflow',
image=validate step container image,
cmds=validate step command,
resources = validate step_ resources,
volumes=[dataset volume, model volume],
volume mounts=[dataset volume mount, model volume mount],
name="ai-training-run-validate",
task_id="validate",
is_delete operator_ pod=True,
hostnetwork=False
)

State that inference validation job should be executed after model volume snapshot is taken
model_snapshot >> validate

Rapidly Clone a Dataset to create a Data Scientist Workspace

The example DAG outlined in this section implements a workflow that takes advantage of NetApp
FlexClone technology to clone a dataset volume rapidly and efficiently and create a data scientist or
developer workspace.

Prerequisites
For this DAG to function correctly, you must complete the following prerequisites:

1. You must have created a connection in Airflow for your ONTAP system as outlined in Prerequisite #1
in the section “Implement an End-to-End Al Training Workflow with Built-in Traceability and
Versioning.”

2. You must have created a connection in Airflow for a host that is accessible via SSH and on which
tridentctl, the NetApp Trident management utility, is installed and configured to point to your
Kubernetes cluster.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service Ul.
The example screenshot that follows shows the creation of a connection for a specific host on which
tridentctl is installed and configured. The following values are required:

— Conn ID. Unigue name for the connection.
— Conn Type. Must be set to ‘SSH’.

72 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

— Host. The host name or IP address of the host.
— Login. Username to use when accessing the host via SSH.
— Password. Password to use when accessing the host via SSH.

® © ® ¢ Admin- Connections - Airflow X 4

< C (@ A NotSecure | 10.61.188.112:30366/admin/connection/new/?url=%2Fadmin%2Fconnection%2F ¥ G O wm A Q0 @ N @ 3

P fAirﬂow DAGs Data Profiling v Browse v Admin v Docs v About ¥ 2020-10-05 20:02:32 UTC

Connection [create]

List Create
Connid* tridentctl_jumphost
Conn Type SSH
Host 10.61.188.110
Username ai
Password = seseeeses
Port
Extra

Save and Add Another Save and Continue Editing m

3. There must be an existing PersistentVolumeClaim (PVC) within your Kubernetes cluster that is tied to
the volume that contains the dataset that you wish to clone.

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this
example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS
section to match your environment.

Airflow DAG Definition: Create Data Scientist Workspace

#
Steps:
1. Clone source volume

2. Import clone into Kubernetes using Trident

from airflow.utils.dates import days_ago

from airflow.secrets import get connections

from airflow.models import DAG

from airflow.operators.python operator import PythonOperator
from airflow.contrib.operators.ssh operator import SSHOperator

73 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

from datetime import datetime

###4## DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####

Define default args for DAG

create data scientist workspace dag default args = {
'owner': 'NetApp'

}

Define DAG details
create data scientist workspace dag = DAG(
dag id='create data scientist workspace',
default args=create data scientist workspace dag default args,
schedule interval=None,
start date=days_ago (2),
tags=['dev-workspace']

)
Define volume details (change values as necessary to match your environment)

ONTAP system details

ontapAirflowConnectionName = 'ontap ai' # Name of the Airflow connection that contains
connection details for your ONTAP system's cluster admin account

verifySSLCert = False # Denotes whether or not to verify the SSL cert when calling the ONTAP
API

Source volume details
sourcePvName = 'pvc-79e0855a-30al-4£63-b34c-1029b1df49f6' # Name of Kubernetes PV corresponding
to source volume

Clone volume details (details for the new clone that you will be creating)
timestampForVolumeName = datetime.today().strftime ("%Y%m%d_ %H%M%S")

cloneVolumeName = 'airflow clone %s' % timestampForVolumeName

clonePvcNamespace = 'airflow' # Kubernetes namespace that you want the new clone volume to be

imported into

Define tridentctl Jjumphost details (change values as necessary to match your environment)
tridentctlAirflowConnectionName = 'tridentctl jumphost' # Name of the Airflow connection of type
'ssh' that contains connection details for a jumphost on which tridentctl is installed

Define Trident details

tridentStorageClass = 'ontap-flexvol' # Kubernetes StorageClass that you want to use when
importing the new clone volume

tridentNamespace = 'trident' # Namespace that Trident is installed in

tridentBackend = 'ontap-flexvol' # Trident backend that you want to use when importing the new
clone volume

ifddsaasisssasaisisaanisdsassisiaasrissasaaiissagiaiaagiiisaastiisaaaiiisaaniiisatniiisnRnissssi

Define function that clones a NetApp volume
def netappClone(task instance, **kwargs) -> str
Parse args
for key, value in kwargs.items() :

if key == 'sourcePvName'
sourcePvName = value

elif key == 'verifySSLCert'
verifySSLCert = value

elif key == 'airflowConnectionName'
airflowConnectionName = value

elif key == 'cloneVolumeName'

cloneVolumeName = value

Install netapp ontap package

import sys, subprocess

result = subprocess.check output ([sys.executable,
ontap'l])

print (str(result) .replace('\\n', '\n'"))

-m', 'pip', 'install', '--user', 'netapp-

Import needed functions/classes

74 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

from netapp ontap import config as netappConfig

from netapp ontap.host connection import HostConnection as NetAppHostConnection
from netapp ontap.resources import Volume, Snapshot

from datetime import datetime

import json

Retrieve ONTAP cluster admin account details from Airflow connection

connections = get connections(conn_id = airflowConnectionName)

ontapConnection = connections[0] # Assumes that you only have one connection with the
specified conn id configured in Airflow

ontapClusterAdminUsername = ontapConnection.login

ontapClusterAdminPassword = ontapConnection.password

ontapClusterMgmtHostname = ontapConnection.host

Configure connection to ONTAP cluster/instance
netappConfig.CONNECTION = NetAppHostConnection (
host = ontapClusterMgmtHostname,
username = ontapClusterAdminUsername,
password = ontapClusterAdminPassword,
verify = verifySSLCert
)

Convert pv name to ONTAP volume name
The following will not work if you specified a custom storagePrefix when creating your
Trident backend. If you specified a custom storagePrefix, you will need to update this

code to match your prefix.
sourceVolumeName = 'trident %s' % sourcePvName.replace("-", " ")
print ('\nSource pv name: ', sourcePvName)

print ('Source ONTAP volume name: ', sourceVolumeName)

Create clone

sourceVolume = Volume.find (name = sourceVolumeName)
cloneVolume = Volume.from dict ({
'name': cloneVolumeName,
'svm': sourceVolume.to dict()['svm'],
'clone': {
'is flexclone':'true',

'parent volume': sourceVolume.to dict()
}I

'nas': {
'path': '/%s' % cloneVolumeName
}
}
response = cloneVolume.post ()

print ("\nAPI Response:")
print (response.http response.text)

Retrieve clone volume details
cloneVolume.get ()

Convert clone volume details to JSON string
cloneVolumeDetails = cloneVolume.to dict()
print ("\nClone Volume Details:")

print (json.dumps (cloneVolumeDetails, indent=2))

Create PVC name that resembles volume name and push as XCom for future use
task_instance.xcom push(key = 'clone pvc name', value =
cloneVolumeDetails['name'].replace(' ', '-"))

Return name of new clone volume
return cloneVolumeDetails|['name']

Define DAG steps/workflow
with create data scientist workspace dag as dag :

Define step to clone source volume
clone source = PythonOperator (
task _id='clone-source',
provide_context:True,
python callable=netappClone,

75 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

op_kwargs={
'airflowConnectionName': ontapAirflowConnectionName,
'sourcePvName': sourcePvName,
'verifySSLCert': verifySSLCert,
'cloneVolumeName': cloneVolumeName

by

dag=dag

)

Define step to import clone into Kubernetes using Trident

cloneVolumeName = "{{ task instance.xcom pull (task_ ids='clone-source', key='return value')
P

clonePvcName = "{{ task instance.xcom pull (task ids='clone-source', key='clone pvc name') }}"

import command = '''cat << EOD > import-pvc-%s.yaml && tridentctl -n %s import volume %s %s -

f ./import-pvc-%s.yaml && rm -f import-pvc-%s.yaml
kind: PersistentVolumeClaim
apiversion: vl
metadata:
name: %s
namespace: %s

spec:
accessModes:
- ReadWriteMany
storageClassName: $s
EOD''' % (clonePvcName, tridentNamespace, tridentBackend, cloneVolumeName, clonePvcName,
clonePvcName, clonePvcName, clonePvcNamespace, tridentStorageClass)
import clone = SSHOperator (

task_id="import-clone",
command=import command,
ssh conn_id=tridentctlAirflowConnectionName

)

State that the import step should be executed after the initial clone step completes
clone_ source >> import clone

Trigger a SnapMirror Volume Replication Update

The example DAG outlined in this section implements a workflow that takes advantage of NetApp
SnapMirror data replication technology to replicate the contents of a volume between different ONTAP
clusters.

This pipeline can be used to replicate data of any type between ONTAP clusters that might or might not
be located at different sites or in different regions. Potential use cases include the following:

¢ Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AlI/ML model training or retraining.

¢ Replicating a newly trained or newly updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

Prerequisites
For this DAG to function correctly, you must complete the following prerequisites.

¢ You must have created a connection in Airflow for your ONTAP system as outlined in Prerequisite #1
in the section “Implement an End-to-End Al Training Workflow with Built-in Traceability and
Versioning.”

e You must have already initiated an asynchronous SnapMirror relationship between the source and

the destination volume according to standard configuration instructions. For details, refer to official
NetApp documentation.

76 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

http://docs.netapp.com/
http://docs.netapp.com/

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this
example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS
section to match your environment.

Airflow DAG Definition: Replicate Data - SnapMirror
#

Steps:

1. Trigger NetApp SnapMirror update

from airflow.utils.dates import days ago

from airflow.secrets import get connections

from airflow.models import DAG

from airflow.operators.python operator import PythonOperator

#4##4## DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####

Define default args for DAG

replicate data snapmirror dag default args = {
'owner': 'NetApp'

}

Define DAG details
replicate data snapmirror dag = DAG(
dag id='replicate data snapmirror',
default args=replicate data snapmirror dag default args,
schedule interval=None,
start date=days ago(2),
tags=['data-movement']

)
Define SnapMirror details (change values as necessary to match your environment)

Destination ONTAP system details

airflowConnectionName = 'ontap ai' # Name of the Airflow connection that contains connection
details for the destination ONTAP system's cluster admin account

verifySSLCert = False # Denotes whether or not to verify the SSL cert when calling the ONTAP
API

SnapMirror relationship details (existing SnapMirroer relationship for which you want to
trigger an update)

sourceSvm = "ailab"
sourceVolume = "sm"
destinationSvm = "ai221 data"
destinationVolume = "sm dest"

FESEA AR R R R R R R R R R R R R R R

Define function that triggers a NetApp SnapMirror update
def netappSnapMirrorUpdate (**kwargs) -> int
Parse args
for key, value in kwargs.items ()
if key == 'sourceSvm'
sourceSvm = value
elif key == 'sourceVolume'
sourceVolume = value
elif key == 'destinationSvm'
destinationSvm = value
elif key == 'destinationVolume'
destinationVolume = value
elif key == 'verifySSLCert'
verifySSLCert = value
elif key == 'airflowConnectionName'
airflowConnectionName = value

Install ansible package

77 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

import sys, subprocess, os

print ("Installing required Python modules:\n")

result = subprocess.check output ([sys.executable, '-m', 'pip', 'install', '--user',
'ansible', 'netapp-1lib'])

print (str (result) .replace('\\n', '\n'"))

Retrieve ONTAP cluster admin account details from Airflow connection

connections = get_connections(conn_id = airflowConnectionName)

ontapConnection = connections[0] # Assumes that you only have one connection with the
specified conn id configured in Airflow

ontapClusterAdminUsername = ontapConnection.login

ontapClusterAdminPassword = ontapConnection.password

ontapClusterMgmtHostname = ontapConnection.host

Define temporary Ansible playbook for triggering SnapMirror update
snapMirrorPlaybookContent = """

- name: "Trigger SnapMirror Update"
hosts: localhost
tasks:

- name: update snapmirror
na_ontap_ snapmirror:
state: present

source_path: '%s:%s'
destination path: '%s:%s'
hostname: '%s'

username: 'S$s'

password: 'S$s'

https: 'yes'

validate certs: '%s'""" % (sourceSvm, sourceVolume, destinationSvm, destinationVolume,

ontapClusterMgmtHostname,
ontapClusterAdminUsername, ontapClusterAdminPassword, str(verifySSLCert))

print ("Creating temporary Ansible playbook.\n")
snapMirrorPlaybookFilepath = "/home/airflow/snapmirror-update.yaml"
snapMirrorPlaybookFile = open (snapMirrorPlaybookFilepath, "w")
snapMirrorPlaybookFile.write (snapMirrorPlaybookContent)
snapMirrorPlaybookFile.close ()

Trigger SnapMirror update
print ("Executing Ansible playbook to trigger SnapMirror update:\n")
try :
result = subprocess.check output(['ansible-playbook', snapMirrorPlaybookFilepath])
print (str (result) .replace('\\n', '\n'"))
except Exception as e
print ("Exception:", str(e).strip())
print ("Removing temporary Ansible playbook.")

os.remove (snapMirrorPlaybookFilepath) # Remove temporary Ansible playbook before exiting

raise

Remove temporary Ansible playbook before exiting
print ("Removing temporary Ansible playbook.\n")
os.remove (snapMirrorPlaybookFilepath)

Return success code
return 0

Define DAG steps/workflow
with replicate data snapmirror dag as dag :

Define step to trigger a NetApp SnapMirror update
trigger snapmirror = PythonOperator (
task id='trigger-snapmirror',
python callable=netappSnapMirrorUpdate,
op_kwargs={
'airflowConnectionName': airflowConnectionName,
'verifySSLCert': verifySSLCert,
'sourceSvm': sourceSvm,
'sourceVolume': sourceVolume,
'destinationSvm': destinationSvm,
'destinationVolume': destinationVolume

78 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Trigger a Cloud Sync Replication Update

The example DAG outlined in this section implements a workflow that takes advantage of NetApp Cloud
Sync replication technology to replicate data to and from a variety of file and object storage platforms.
Potential use cases include the following:

Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for Al/ML model training or retraining.

Replicating a newly trained or newly updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the
training of an AI/ML model.

Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance Al/ML
training environment for use in the training of an AI/ML model.

Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage.

Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance
AI/ML training environment for use in the training of an AI/ML model.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites.

1.

79

You must have created a connection in Airflow for the NetApp Cloud Sync API.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service Ul.
The example screenshot that follows shows the creation of a connection for the Cloud Sync API. The
following values are required:

— Conn ID. Unigue name for the connection.
— Password. Your Cloud Sync API refresh token.

NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

® @ ¥ Admin- Connections - Airflow X +

& C' ({+ A NotSecure | 10.61.188.112:30366/admin/connection/new/?url=%2Fadmin%2Fconnection%2F * @G o wm I 0 @R g H

& Airflow DAGs Data Profiling v Browse v Admin v Docs v About v 2020-10-05 20:21:38 UTC

Connection [create]

List Create

Connid * cloud_sync
Conn Type
Host
Schema

Login

Port

Extra

Save and Add Ancther Save and Continue Editing m

2. You must have already initiated the Cloud Sync relationship that you wish to trigger an update for. To
initiate a relationship, visit cloudsync.netapp.com.

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this
example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS
section to match your environment.

Airflow DAG Definition: Replicate Data - Cloud Sync
#

Steps:

1. Trigger NetApp Cloud Sync update

from airflow.utils.dates import days_ ago

from airflow.secrets import get connections

from airflow.models import DAG

from airflow.operators.python operator import PythonOperator

DEFINE PARAMETERS: Modify parameter values in this section to match your environment ####4#
Define default args for DAG

replicate data cloud sync_dag default args = {
'owner': 'NetApp'

80 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

http://cloudsync.netapp.com/

}

Define DAG details
replicate data cloud sync _dag = DAG(
dag id='replicate data cloud sync',
default args=replicate data cloud sync dag default args,
schedule interval=None,
start date=days ago(2),
tags=['data-movement']

)
Define Cloud Sync details (change values as necessary to match your environment)

Cloud Sync refresh token details
airflowConnectionName = 'cloud sync' # Name of the Airflow connection that contains your Cloud
Sync refresh token

Cloud Sync relationship details (existing Cloud Sync relationship for which you want to trigger
an update)
relationshipId = '5ed00996ca85650009a83db2"’

FRAAAF AR R R R R R R R R R R R R R R

Function for triggering an update for a specific Cloud Sync relationship
def netappCloudSyncUpdate (**kwargs)

Parse args

printResponse = False # Default value

keepCheckingUntilComplete = True # Default value

for key, value in kwargs.items ()

if key == 'relationshipId'
relationshipId = value

elif key == 'printResponse'
printResponse = value

elif key == 'keepCheckingUntilComplete'
keepCheckingUntilComplete = value

elif key == 'airflowConnectionName'

airflowConnectionName = value

Install requests module
import sys, subprocess
subprocess.run([sys.executable,

-m', 'pip', 'install', 'requests'])
Import needed modules
import requests, json, time

API response error class; objects of this class will be raised when an API resposne is not
as expected
class APIResponseError (Exception)
'"'"'"Error that will be raised when an API response is not as expected'''
pass

Generic function for printing an API response
def printAPIResponse (response: requests.Response)
print ("API Response:")
print ("Status Code: ", response.status code)
print ("Header: ", response.headers)
if response.text

print ("Body: ", response.text)

Function for obtaining access token and account ID for calling Cloud Sync API
def netappCloudSyncAuth (refreshToken: str)
Step 1: Obtain limited time access token using refresh token

Define parameters for API call
url = "https://netapp-cloud-account.auth0.com/oauth/token"
headers = {

"Content-Type": "application/json"

81 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

}
data = {

"grant type": "refresh token",
"refresh token": refreshToken,
"client id": "MuOV1ywgYteI6wlMbD15fKfVIUrNXGWC"

}

Call API to optain access token
response = requests.post(url = url, headers = headers, data = json.dumps (data))

Parse response to retrieve access token

try
responseBody = Jjson.loads (response.text)
accessToken = responseBody["access token"]
except
errorMessage = "Error obtaining access token from Cloud Sync API"

raise APIResponseError (errorMessage, response)
Step 2: Obtain account ID

Define parameters for API call

url = "https://cloudsync.netapp.com/api/accounts"
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer " + accessToken

}

Call API to obtain account ID
response = requests.get(url = url, headers = headers)

Parse response to retrieve account ID

try
responseBody = json.loads (response.text)
accountId = responseBody[0] ["accountId"]
except
errorMessage = "Error obtaining account ID from Cloud Sync API"

raise APIResponseError (errorMessage, response)

Return access token and account ID
return accessToken, accountId

Function for monitoring the progress of the latest update for a specific Cloud Sync

relationship
def netappCloudSyncMonitor (refreshToken: str, relationshipId: str, keepCheckingUntilComplete:
bool = True, printProgress: bool = True, printResponses: bool = False)
Step 1: Obtain access token and account ID for accessing Cloud Sync API
try
accessToken, accountId = netappCloudSyncAuth (refreshToken = refreshToken)

except APIResponseError as err:
if printResponse
errorMessage = err.args[0]
response = err.args[l]
print (errorMessage)
printAPIResponse (response)
raise

Step 2: Obtain status of the latest update; optionally, keep checking until the latest
update has completed

while True
Define parameters for API call

url = "https://cloudsync.netapp.com/api/relationships-v2/%s" % (relationshipId)
headers = {

"Accept": "application/json",

"x—-account-id": accountId,

"Authorization": "Bearer " + accessToken

}

Call API to obtain status of latest update
response = requests.get (url = url, headers = headers)

82 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Print API response
if printResponses :
printAPIResponse (response)

Parse response to retrieve status of latest update

try :
responseBody = json.loads (response.text)
latestActivityType = responseBody["activity"] ["type"]
latestActivityStatus = responseBody["activity"]["status"]
except :
errorMessage = "Error retrieving status of latest update from Cloud Sync API"

raise APIResponseError (errorMessage, response)

End execution if the latest update is complete
if latestActivityType == "Sync" and latestActivityStatus == "DONE" :
if printProgress
print ("Success: Cloud Sync update is complete.")
break

Print message re: progress
if printProgress
print ("Cloud Sync update is not yet complete.")

End execution if calling program doesn't want to monitor until the latest update
has completed
if not keepCheckingUntilComplete
break

Sleep for 60 seconds before checking progress again
print ("Checking again in 60 seconds...")
time.sleep (60)

Retrieve Cloud Sync refresh token from Airflow connection

connections = get connections(conn_id = airflowConnectionName)

cloudSyncConnection = connections[0] # Assumes that you only have one connection with the
specified conn id configured in Airflow

refreshToken = cloudSyncConnection.password

Step 1: Obtain access token and account ID for accessing Cloud Sync API
try :

accessToken, accountId = netappCloudSyncAuth (refreshToken = refreshToken)
except APIResponseError as err:

errorMessage = err.args|[0]

response = err.args[1l]

print (errorMessage)

if printResponse

printAPIResponse (response)
raise

Step 2: Trigger Cloud Sync update

Define parameters for API call

url = "https://cloudsync.netapp.com/api/relationships/%$s/sync" % (relationshipId)
headers = {

"Content-Type": "application/json",

"Accept": "application/json",

"x-account-id": accountId,

"Authorization": "Bearer " + accessToken

}

Call API to trigger update
print ("Triggering Cloud Sync update.")
response = requests.put (url = url, headers = headers)

Check for API response status code of 202; if not 202, raise error
if response.status code != 202 :
errorMessage = "Error calling Cloud Sync API to trigger update."
if printResponse
print (errorMessage)

83 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

printAPIResponse (response)
raise APIResponseError (errorMessage, response)

Print API response

if printResponse :
print ("Note: Status Code 202 denotes that update was successfully triggered.")
printAPIResponse (response)

print ("Checking progress.")
netappCloudSyncMonitor (refreshToken = refreshToken, relationshipId = relationshipId,
keepCheckingUntilComplete = keepCheckingUntilComplete, printResponses = printResponse)

Define DAG steps/workflow
with replicate data cloud sync dag as dag :

Define step to trigger a NetApp Cloud Sync update
trigger cloud sync = PythonOperator (
task_id='trigger-cloud-sync',
python _callable=netappCloudSyncUpdate,
op kwargs={
'airflowConnectionName': airflowConnectionName,
'relationshipId': relationshipId
}I
dag=dag

Trigger an XCP Copy or Sync Operation

The example DAG outlined in this section implements a workflow that invokes NetApp XCP to quickly and
reliably replicate data between NFS endpoints. Potential use cases include the following:

e Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AI/ML model training or retraining.

¢ Replicating a newly trained or newly updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

e Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance Al/ML
training environment for use in the training of an Al/ML model.

e Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance
AI/ML training environment for use in the training of an AlI/ML model.

Prerequisites
For this DAG to function correctly, you must complete the following prerequisites.

1. You must have created a connection in Airflow for a host that is accessible via SSH and on which
NetApp XCP is installed and configured. For details regarding how to install and configure NetApp
XCP, refer to the NetApp XCP homepage and the official NetApp XCP documentation.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service Ul.
The example screenshot that follows shows the creation of a connection for a specific host on which
NetApp XCP is installed and configured. The following values are required:

— Conn ID. Unique name for the connection.

— Conn Type. Must be set to SSH.

— Host. The host name or IP address of the host.

— Login. Username to use when accessing the host via SSH.

— Password. Password to use when accessing the host via SSH.

84 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

http://xcp.netapp.com/
https://mysupport.netapp.com/documentation/productlibrary/index.html?productID=63064

® © ® ¥ Admin- Connections - Airflow X 4

€« C @ A NotSecure | 10.61.188.112:30366/admin/connection/new/?url=%2Fadmin%2Fconnection%2F * @ om A QO F N 0 H

YAirflow DAGs Data Profiling v Browse v Admin v Docs ¥ About v 2020-10-06 15:20:09 UTC

Connection [create]

List Create
Connld * xcp_host
Conn Type SSH
Host 10.61.188.114
Username root
Password | seesseses
Port
Extra

Save and Add Another Save and Continue Editing

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this
example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS
section to match your environment.

Airflow DAG Definition: Replicate Data - XCP
#

Steps:

1. Invoke NetApp XCP copy or sync operation

from airflow.utils.dates import days ago

from airflow.secrets import get connections

from airflow.models import DAG

from airflow.operators.python operator import PythonOperator
from airflow.contrib.operators.ssh operator import SSHOperator
from datetime import datetime

###4## DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####
Define default args for DAG
replicate data xcp dag default args = {

'owner': 'NetApp'
}

85 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Define DAG details
replicate data xcp_dag = DAG(
dag id='replicate data xcp',
default args=replicate data xcp dag default args,
schedule interval=None,
start_date=days_ago(2),
tags=['data-movement']

)

Define xcp operation details (change values as necessary to match your environment and desired
operation)

Define xcp operation to perform
xcpOperation = 'sync' # Must be 'copy' or 'sync'

Define source and destination for copy operation
xcpCopySource = '192.168.200.41:/trident pvc 957318el 9b73 4el6 b857 dca7819dd263"'
xcpCopyDestination = '192.168.200.41:/trident pvc 9e7607c2 29c8 4dbf 9008 551ba72d0273"'

Define catalog id for sync operation
xcpSyncId = 'autoname copy 2020-10-06 16.37.44.963391"'

Define xcp host details (change values as necessary to match your environment)
xcpAirflowConnectionName = 'xcp host' # Name of the Airflow connection of type 'ssh' that
contains connection details for a host on which xcp is installed, configured, and accessible
within $PATH

FHEHHF AR R R R R 4

Construct xcp command

xcpCommand = 'xcp help'
if xcpOperation == 'copy'

xcpCommand = 'xcp copy ' + xcpCopySource + ' ' + xcpCopyDestination
elif xcpOperation == 'sync'

xcpCommand = 'xcp sync -id ' + xcpSyncId

Define DAG steps/workflow
with replicate data xcp dag as dag :

Define step to invoke a NetApp XCP copy or sync operation
invoke xcp = SSHOperator (

task id="invoke-xcp",

command=xcpCommand,

ssh conn_ id=xcpAirflowConnectionName

Example Basic Trident Operations

This section includes examples of various operations that you may want to perform on your Kubernetes
cluster.

Import an Existing Volume

If there are existing volumes on your NetApp storage system/platform that you want to mount on
containers within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must
import these volumes. You can use the Trident volume import functionality to import these volumes.

The example commands that follow show the importing of the same volume, named pb_fg all, twice,
once for each Trident backend that was created in the example in the section “Example Trident Backends
for ONTAP Al Deployments”, step 1. Importing the same volume twice in this manner enables you to
mount the volume (an existing FlexGroup volume) multiple times across different LIFs, as described in the
section “Example Trident Backends for ONTAP Al Deployments,” step 1. For more information about

86 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

PVCs, see the official Kubernetes documentation. For more information about the volume import
functionality, see the Trident documentation.

Note: An accessModes value of ReadOnlyMany is specified in the example PVC spec files. This
value means that multiple pods can mount these volumes at the same time and that access will
be read-only. For more information about the accessMode field, see the official Kubernetes
documentation.

Note: The backend names that are specified in the following example import commands are highlighted
for reference. These names correspond to the backends that were created in the example in the
section “Example Trident Backends for ONTAP Al Deployments,” step 1.

Note: The StorageClass names that are specified in the following example PVC definition files are
highlighted for reference. These names correspond to the StorageClasses that were created in
the example in the section “Example Kubernetes StorageClasses for ONTAP Al Deployments,”
step 1.

$ cat << EOF > ./pvc-import-pb fg all-ifacel.yaml
kind: PersistentVolumeClaim
apiversion: vl
metadata:

name: pb-fg-all-ifacel

namespace: default
spec:

accessModes:

- ReadOnlyMany

storageClassName: ontap-ai-flexgroups-retain-ifacel
EOF
$ tridentctl import volume ontap-ai-flexgroups-ifacel pb fg all -f ./pvc-import-pb fg all-
ifacel.yaml -n trident

Fom fomm - o R o
————————————————————————————————————— Fommmm -4

| NAME | SIZE | STORAGE CLASS | PROTOCOL |
BACKEND UUID | STATE | MANAGED |

Fom fomm - Fmm R o
——————————————————————————————————— Fommmm -4

| default-pb-fg-all-ifacel-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-ifacel | file |
b74cbddb-e0b8-40b7-b263-b6dabdecObdd | online | true |

$ cat << EOF > ./pvc-import-pb fg all-iface2.yaml
kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: pb-fg-all-iface2

namespace: default
spec:

accessModes:

- ReadOnlyMany

storageClassName: ontap-ai-flexgroups-retain-iface2
EOF
$ tridentctl import volume ontap-ai-flexgroups-iface2 pb fg all -f ./pvc-import-pb fg all-
iface2.yaml -n trident

e fommm B e it fommm o fomm -
————————————————————————————————————— R e ittt S

| NAME | SIZE | STORAGE CLASS | PROTOCOL |
BACKEND UUID | STATE | MANAGED |

e fommm B e it fommm o fomm -
——————————————————————————————————— R e ittt S

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-iface2 | file |
61814d48-c770-436b-9cb4-cf7ee661274d | online | true |

B Fo————— B et Fomm Fo————
————————————————————————————————————— R e L L

$ tridentctl get volume -n trident

e e e e e fo———— et et e e fom— +-———-
—————————————————————————————————— Fomm ¢

| NAME | SIZE | STORAGE CLASS | PROTOCOL |
BACKEND UUID | STATE | MANAGED |

87 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

—————————————————————————————————— et T L

| default-pb-fg-all-ifacel-7d9fl | 10 TiB | ontap-ai-flexgroups-retain-ifacel | file |
b74cbddb-e0b8-40b7-b263-b6dabdecObdd | online | true |

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-iface2 | file |
61814d48-c770-436b-9cb4-cf7ee661274d | online | true |

o Fo————— et e e T T fom— +———
—————————————————————————————————— Fo—m 4

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE

pb-fg-all-ifacel Bound default-pb-fg-all-ifacel-7d9f1 10995116277760 ROX
ontap-ai-flexgroups-retain-ifacel 25h

pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee 10995116277760 ROX
ontap-ai-flexgroups-retain-iface2 25h

Provision a New Volume

You can use Trident to provision a new volume on your NetApp storage system or platform. The following
example commands show the provisioning of a new FlexVol volume. In this example, the volume is
provisioned using the StorageClass that was created in the example in the section “Example Kubernetes
StorageClasses for ONTAP Al Deployments,” step 2.

Note: An accessModes value of ReadWriteMany is specified in the following example PVC definition
file. This value means that multiple containers can mount this PVC at the same time and that
access is read-write. For more information about the accessMode field, see the official
Kubernetes documentation.

$ cat << EOF > ./pvc-tensorflow-results.yaml
kind: PersistentVolumeClaim
apivVersion: vl
metadata:
name: tensorflow-results
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 1Gi
storageClassName: ontap-ai-flexvols-retain
EOF
$ kubectl create -f ./pvc-tensorflow-results.yaml
persistentvolumeclaim/tensorflow-results created
$ kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

pb-fg-all-ifacel Bound default-pb-fg-all-ifacel-7d9fl 10995116277760
ROX ontap-ai-flexgroups-retain-ifacel 26h

pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee 10995116277760
ROX ontap-ai-flexgroups-retain-iface?2 26h

tensorflow-results Bound default-tensorflow-results-2£d60 1073741824

RWX ontap-ai-flexvols-retain 25h

Example High-performance Jobs for ONTAP Al Deployments

This section includes examples of various high-performance jobs that can be executed when the NetApp
Al Control Plane solution is deployed on an ONTAP Al pod.
Execute a Single-Node Al Workload

To execute a single-node Al and ML job in your Kubernetes cluster, perform the following tasks from the
deployment jump host. With Trident, you can quickly and easily make a data volume, potentially
containing petabytes of data, accessible to a Kubernetes workload. To make such a data volume

88 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

accessible from within a Kubernetes pod, simply specify a PVC, such as one of the PVCs that was
created in the example in the section “Import an Existing Volume,” in the pod definition. This step is a
Kubernetes-native operation; no NetApp expertise is required.

Note: This section assumes that you have already containerized (in the Docker container format) the
specific Al and ML workload that you are attempting to execute in your Kubernetes cluster.

1. The following example commands show the creation of a Kubernetes job for a TensorFlow
benchmark workload that uses the ImageNet dataset. For more information about the ImageNet
dataset, see the ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that
features eight or more GPUs. This example job could be submitted in a cluster for which a worker
node featuring eight or more GPUs is not present or is currently occupied with another workload. If
so, then the job remains in a pending state until such a worker node becomes available.

Additionally, to provide the required amount of storage bandwidth, the volume that contains the
needed training data (the volume that was imported in the example in the section “Import an Existing
Volume”) is mounted twice within the pod that this job creates. See the highlighted lines in the
following job definition. See the section “Example Trident Backends for ONTAP Al Deployments”,
step 1, for details about why you might want to mount the same data volume multiple times. The
number of mounts that you need depends on the amount of bandwidth that the specific job requires.

The volume that was created in the example in the section “Provision a New Volume” is also mounted
in the pod. These volumes are referenced in the job definition by using the names of the PVCs. For
more information about Kubernetes jobs, see the official Kubernetes documentation.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this
example job creates. The default size of the /dev/shm virtual volume that is automatically created by
the Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an
emptyDir volume as in the following example provides a sufficiently large /dev/shm virtual volume.
For more information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext >
privileged value of true. This value means that the container effectively has root access on the
host. This annotation is used in this case because the specific workload that is being executed
requires root access. Specifically, a clear cache operation that the workload performs requires root
access. Whether or not this privileged: true annotation is necessary depends on the
requirements of the specific workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml
apiVersion: batch/vl
kind: Job
metadata:
name: netapp-tensorflow-single-imagenet
spec:
backoffLimit: 5
template:
spec:
volumes:
- name: dshm
emptyDir:
medium: Memory
- name: testdata-ifacel
persistentVolumeClaim:
claimName: pb-fg-all-ifacel
- name: testdata-iface2
persistentVolumeClaim:
claimName: pb-fg-all-iface2
- name: results
persistentVolumeClaim:
claimName: tensorflow-results
containers:
- name: netapp-tensorflow-py2
image: netapp/tensorflow-py2:19.03.0

89 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

http://www.image-net.org/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

"

command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount 0/dataset/imagenet", "--dgx_version=dgxl", "--num_devices=8"]
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:

- mountPath: /dev/shm
name: dshm
- mountPath: /mnt/mount 0
name: testdata-ifacel
- mountPath: /mnt/mount 1
name: testdata-iface2
- mountPath: /tmp
name: results
securityContext:
privileged: true
restartPolicy: Never
EOF
$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml
job.batch/netapp-tensorflow-single-imagenet created
$ kubectl get jobs
NAME COMPLETIONS DURATION AGE
netapp-tensorflow-single-imagenet 0/1 24s 24s

2. Confirm that the job that you created in step 1 is running correctly. The following example command
confirms that a single pod was created for the job, as specified in the job definition, and that this pod
is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE
IP NODE NOMINATED NODE
netapp-tensorflow-single-imagenet-m7x92 1/1 Running 0 3m

10.233.68.61 10.61.218.154 <none>

3. Confirm that the job that you created in step 1 completes successfully. The following example
commands confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE
netapp-tensorflow-single-imagenet 1/1 5m42s 10m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
netapp-tensorflow-single-imagenet-m7x92 0/1 Completed 0 1lm

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92
[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c
at line 702

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-PERMISSIONS in file gds dstore.c
at line 711

Total images/sec = 6530.59125
Clean Cache !!!
mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 > /proc/sys/vm/drop caches'

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x
LD LIBRARY PATH -x PATH python
/netapp/tensorflow/benchmarks 190205/scripts/tf cnn_benchmarks/tf cnn_benchmarks.py --

model=resnet50 --batch size=256 --device=gpu --force gpu compatible=True --num intra threads=1 --
num_inter threads=48 --variable update=horovod --batch group size=20 --num batches=500 --
nodistortions --num gpus=1 --data format=NCHW --use fpl6=True --use tf layers=False --

data name=imagenet --use datasets=True --data dir=/mnt/mount 0/dataset/imagenet --

datasets parallel interleave cycle length=10 --datasets sloppy parallel interleave=False --
num_mounts=2 --mount prefix=/mnt/mount %d --datasets prefetch buffer size=2000 --
datasets use prefetch=True --datasets num private threads=4 --horovod device=gpu >

/tmp/20190814 105450 tensorflow horovod rdma resnet50 gpu 8 256 b500 imagenet nodistort fpl6 rl0
m2 nockpt.txt 2>&1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job
object that was created in step 1.

Note: When you delete the job object, Kubernetes automatically deletes any associated pods.

90 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE
netapp-tensorflow-single-imagenet 1/1 5m42s 10m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
netapp-tensorflow-single-imagenet-m7x92 0/1 Completed 0 1lm

$ kubectl delete job netapp-tensorflow-single-imagenet
job.batch "netapp-tensorflow-single-imagenet" deleted
$ kubectl get jobs
No resources found.
$ kubectl get pods
No resources found.

Execute a Synchronous Distributed Al Workload

To execute a synchronous multinode Al and ML job in your Kubernetes cluster, perform the following
tasks on the deployment jump host. This process enables you to take advantage of data that is stored on
a NetApp volume and to use more GPUs than a single worker node can provide. See Figure 9 for a
visualization.

Note: Synchronous distributed jobs can help increase performance and training accuracy compared

with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs versus

asynchronous jobs is outside the scope of this document.

Figure 9) Synchronous distributed Al job.
Kubernetes (k8s) Cluster

Kube API

Data Data Data Data
.

Master Node GPU Node GPU Node 2

data volume

1. The following example commands show the creation of one worker that participates in the
synchronous distributed execution of the same TensorFlow benchmark job that was executed on a
single node in the example in the section “Execute a Single-Node Al Workload.” In this specific
example, only a single worker is deployed because the job is executed across two worker nodes.

This example worker deployment requests eight GPUs and thus can run on a single GPU worker

node that features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to
maximize performance, you might want to increase this number to be equal to the number of GPUs
that your worker nodes feature. For more information about Kubernetes deployments, see the official
Kubernetes documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would

never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job
construct. If your worker is designed or written to complete on its own, then it might make sense to
use the job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of
true. This value means that the pod uses the host worker node’s networking stack instead of the
virtual networking stack that Kubernetes usually creates for each pod. This annotation is used in this

case because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload

in a synchronous distributed manner. Therefore, it requires access to the host networking stack. A

91 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

discussion about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or
not this hostNetwork: true annotation is necessary depends on the requirements of the specific
workload that you are executing. For more information about the hostNetwork field, see the official
Kubernetes documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml
apiVersion: apps/vl
kind: Deployment
metadata:
name: netapp-tensorflow-multi-imagenet-worker
spec:
replicas: 1
selector:
matchLabels:
app: netapp-tensorflow-multi-imagenet-worker
template:
metadata:
labels:
app: netapp-tensorflow-multi-imagenet-worker
spec:
hostNetwork: true
volumes:
- name: dshm
emptyDir:
medium: Memory
- name: testdata-ifacel
persistentVolumeClaim:
claimName: pb-fg-all-ifacel
- name: testdata-iface?2
persistentVolumeClaim:
claimName: pb-fg-all-iface2
- name: results
persistentVolumeClaim:
claimName: tensorflow-results
containers:
- name: netapp-tensorflow-py2
image: netapp/tensorflow-py2:19.03.0

command: ["bash", "/netapp/scripts/start-slave-multi.sh", "22122"]
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:

- mountPath: /dev/shm
name: dshm
- mountPath: /mnt/mount_ 0
name: testdata-ifacel
- mountPath: /mnt/mount 1
name: testdata-iface2
- mountPath: /tmp
name: results
securityContext:
privileged: true
EOF
$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml
deployment .apps/netapp-tensorflow-multi-imagenet-worker created
$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
netapp-tensorflow-multi-imagenet-worker 1 1 1 1 4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following
example commands confirm that a single worker pod was created for the deployment, as indicated in
the deployment definition, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE
IP NODE NOMINATED NODE
netapp-tensorflow-multi-imagenet-worker-654£fc7£486-v6725 1/1 Running 0 60s

| 10.61.218.154 10.61.218.154 <none>
\$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654£fc7£486-v6725

92 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces

‘22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the
synchronous multinode job. The following example commands create one master that kicks off,
participates in, and tracks the synchronous distributed execution of the same TensorFlow benchmark
job that was executed on a single node in the example in the section “Execute a Single-Node Al
Workload.”

This example master job requests eight GPUs and thus can run on a single GPU worker node that
features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize
performance, you might want to increase this number to be equal to the number of GPUs that your
worker nodes feature.

Note: The master pod that is specified in this example job definition is given a hostNetwork value
of true, just as the worker pod was given a hostNetwork value of true in step 1. See step
1 for details about why this value is necessary.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml
apiVersion: batch/vl
kind: Job
metadata:
name: netapp-tensorflow-multi-imagenet-master
spec:
backoffLimit: 5
template:
spec:
hostNetwork: true
volumes:
- name: dshm
emptyDir:
medium: Memory
- name: testdata-ifacel
persistentVolumeClaim:
claimName: pb-fg-all-ifacel
- name: testdata-iface?2
persistentVolumeClaim:
claimName: pb-fg-all-iface2
- name: results
persistentVolumeClaim:
claimName: tensorflow-results
containers:
- name: netapp-tensorflow-py2
image: netapp/tensorflow-py2:19.03.0

command: ["python", "/netapp/scripts/run.py", "--
dataset dir=/mnt/mount 0/dataset/imagenet", "--port=22122", "--num devices=16", "--
dgx version=dgxl", "--nodes=10.61.218.152,10.61.218.154"]
resources:
limits:
nvidia.com/gpu: 8
volumeMounts:

- mountPath: /dev/shm
name: dshm
- mountPath: /mnt/mount 0
name: testdata-ifacel
- mountPath: /mnt/mount 1
name: testdata-iface2
- mountPath: /tmp
name: results
securityContext:
privileged: true
restartPolicy: Never
EOF
$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml
job.batch/netapp-tensorflow-multi-imagenet-master created
$ kubectl get Jjobs
NAME COMPLETIONS DURATION AGE
netapp-tensorflow-multi-imagenet-master 0/1 25s 25s

93 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

4. Confirm that the master job that you created in step 3 is running correctly. The following example
command confirms that a single master pod was created for the job, as indicated in the job definition,
and that this pod is currently running on one of the GPU worker nodes. You should also see that the
worker pod that you originally saw in step 1 is still running and that the master and worker pods are
running on different nodes.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE
IP NODE NOMINATED NODE
netapp-tensorflow-multi-imagenet-master-ppwwj 1/1 Running 0 45s
10.61.218.152 10.61.218.152 <none>
netapp-tensorflow-multi-imagenet-worker-654£fc7£486-v6725 1/1 Running 0 26m

10.61.218.154 10.61.218.154 <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example
commands confirm that the job completed successfully.

$ kubectl get Jjobs

NAME COMPLETIONS DURATION AGE
netapp-tensorflow-multi-imagenet-master 1/1 5m50s 9ml8s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
netapp-tensorflow-multi-imagenet-master—-ppwwj 0/1 Completed 0 Im38s
netapp-tensorflow-multi-imagenet-worker-654£fc7£486-v6725 1/1 Running 0 35m

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppwwj

[10.61.218.152:00008] WARNING: local probe returned unhandled shell:unknown assuming bash
rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.
[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.
[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds dstore.
[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.
Total images/sec = 12881.33875
Clean Cache !!!
mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca pml obl -mca btl “openib
-mca btl tcp if include enpls0f0 -mca plm rsh agent ssh -mca plm rsh args "-p 22122" bash -c
'sync; echo 1 > /proc/sys/vm/drop caches'

at line 702
at line 711
at line 702
at line 711

Qa0

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8 -bind-to none -map-by slot -x
NCCL_DEBUG=INFO -x LD LIBRARY PATH -x PATH -mca pml obl -mca btl "“openib -mca btl tcp if include
enpls0f0 -x NCCL IB HCA=mlx5 -x NCCL NET GDR READ=1 -x NCCL_IB SL=3 -x NCCL IB GID INDEX=3 -x
NCCL_SOCKET_IFNAME=enp5s0.3091,enpl2s0.3092,enp132s0.3093,enpl139s0.3094 -x NCCL_IB_CUDA SUPPORT=1
-mca orte base help aggregate 0 -mca plm_rsh agent ssh -mca plm rsh args "-p 22122" python
/netapp/tensorflow/benchmarks 190205/scripts/tf cnn benchmarks/tf cnn benchmarks.py --
model=resnet50 --batch size=256 --device=gpu --force_gpu_compatible=True --num_intra_ threads=1 --

num_inter threads=48 --variable update=horovod --batch group size=20 --num batches=500 --
nodistortions --num gpus=1 --data format=NCHW --use fpl6=True --use tf layers=False --
data name=imagenet --use datasets=True --data dir=/mnt/mount 0/dataset/imagenet --

datasets_parallel interleave cycle length=10 --datasets_sloppy parallel interleave=False --
num_mounts=2 --mount_prefix=/mnt/mount_%d --datasets_prefetch buffer size=2000 --

datasets_use prefetch=True --datasets num private threads=4 --horovod device=gpu >

/tmp/20190814 161609 tensorflow horovod rdma resnet50 gpu 16 256 b500 imagenet nodistort fplé6 rl0
_m2_nockpt.txt 2>&l

6. Delete the worker deployment when you no longer need it. The following example commands show
the deletion of the worker deployment object that was created in step 1.

Note: When you delete the worker deployment object, Kubernetes automatically deletes any
associated worker pods.

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
netapp-tensorflow-multi-imagenet-worker 1 1 1 1 43m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 17m
netapp-tensorflow-multi-imagenet-worker-654£fc7£486-v6725 1/1 Running 0 43m

S kubectl delete deployment netapp-tensorflow-multi-imagenet-worker
deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted
$ kubectl get deployments

94 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

No resources found.
$ kubectl get pods
NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of
the master job object that was created in step 3.

Note: When you delete the master job object, Kubernetes automatically deletes any associated
master pods.

$ kubectl get Jjobs

NAME COMPLETIONS DURATION AGE
netapp-tensorflow-multi-imagenet-master 1/1 5m50s 19m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 19m

$ kubectl delete Jjob netapp-tensorflow-multi-imagenet-master
job.batch "netapp-tensorflow-multi-imagenet-master" deleted
S kubectl get jobs
No resources found.
$ kubectl get pods
No resources found.

Performance Testing

We performed a simple performance comparison as part of the creation of this solution. We executed
several standard NetApp benchmarking jobs by using Kubernetes, and we compared the benchmark
results with executions that were performed by using a simple Docker run command. We did not see any
noticeable differences in performance. Therefore, we concluded that the use of Kubernetes to orchestrate
containerized jobs does not adversely affect performance. Table 3 lists the results of our performance
comparison.

Table 3) Performance comparison results.

Benchmark Dataset Docker Run Kubernetes
(images/sec) (images/sec)
Single-node TensorFlow Synthetic data 6,667.2475 6,661.93125
Single-node TensorFlow ImageNet 6,570.2025 6,530.59125
Synchronous distributed two-node TensorFlow Synthetic data 13,213.70625 13,218.288125
Synchronous distributed two-node TensorFlow ImageNet 12,941.69125 12,881.33875
Conclusion

Companies and organizations of all sizes and across all industries are turning to artificial intelligence (Al),
machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative products
and services, and to get an edge in an increasingly competitive marketplace. As organizations increase
their use of Al, ML, and DL, they face many challenges, including workload scalability and data
availability. These challenges can be addressed through the use of the NetApp Al Control Plane,
NetApp’s full stack Al data and experiment management solution.

This solution enables you to rapidly clone a data namespace just as you would a Git repo. Additionally, it
allows you to define and implement Al, ML, and DL training workflows that incorporate the near-instant
creation of data and model baselines for traceability and versioning. With this solution, you can trace
every single model training run back to the exact dataset(s) that the model was trained and/or validated
with. Lastly, this solution enables you to swiftly provision Jupyter Notebook workspaces with access to
massive datasets.

95 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Because this solution is targeted towards data scientists and data engineers, no NetApp or NetApp
ONTAP expertise is required. With this solution, data management functions can be executed using
simple and familiar tools and interfaces. Furthermore, this solution utilizes fully open-source and free
components. Therefore, if you already have NetApp storage in your environment, you can implement this
solution today. If you want to test drive this solution but you do not have already have NetApp storage,
visit cloud.netapp.com, and you can be up and running with a cloud-based NetApp storage solution in no
time.

Acknowledgments

e David Arnette, Technical Marketing Engineer, NetApp
e Sung-Han Lin, Performance Analyst, NetApp

e Steve Guhr, Solutions Engineer, NetApp

e Muneer Ahmad, Solutions Architect, NetApp

e Santosh Rao, Senior Technical Director, NetApp

e Bala Ramesh, Technical Marketing Engineer, NetApp
e George Tehrani, Product Manager, NetApp

Where to Find Additional Information

To learn more about the information that is described in this document, see the following resources:

¢ NVIDIA DGX-1 servers:

— NVIDIA DGX-1 servers
https://www.nvidia.com/en-us/data-center/dgx-1/

— NVIDIA Tesla V100 Tensor Core GPU
https://www.nvidia.com/en-us/data-center/tesla-v100/

— NVIDIA GPU Cloud (NGC)
https://www.nvidia.com/en-us/gpu-cloud/

e NetApp AFF systems:

— AFF datasheet
https://www.netapp.com/us/media/ds-3582.pdf

— NetApp FlashAdvantage for AFF
https://www.netapp.com/us/media/ds-3733.pdf

— ONTAP 9.x documentation
http://mysupport.netapp.com/documentation/productlibrary/index.html?productiD=62286

— NetApp FlexGroup technical report
https://www.netapp.com/us/media/tr-4557.pdf

e NetApp persistent storage for containers:

— NetApp Trident
https://netapp.io/persistent-storage-provisioner-for-kubernetes/

e NetApp Interoperability Matrix:

— NetApp Interoperability Matrix Tool
http://support.netapp.com/matrix

e ONTAP Al networking:

— Cisco Nexus 3232C Switches
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html

96 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

http://cloud.netapp.com/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
http://support.netapp.com/matrix
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html

— Mellanox Spectrum 2000 series switches
http://www.mellanox.com/page/products _dyn?product family=251&mtag=sn2000

e ML framework and tools:

— DALI
https://github.com/NVIDIA/DALI

— TensorFlow: An Open-Source Machine Learning Framework for Everyone
https://www.tensorflow.org/

— Horovod: Uber’'s Open-Source Distributed Deep Learning Framework for TensorFlow
https://eng.uber.com/horovod/

— Enabling GPUs in the Container Runtime Ecosystem
https://devblogs.nvidia.com/gpu-containers-runtime/

— Docker
https://docs.docker.com

— Kubernetes
https://kubernetes.io/docs/home/

— NVIDIA DeepOps
https://github.com/NVIDIA/deepops

— Kubeflow
http://www.kubeflow.org/

— Jupyter Notebook Server
http://www.jupyter.org/

e Dataset and benchmarks:

— ImageNet
http://www.image-net.org/

- COCO
http://cocodataset.org/
— Cityscapes
https://www.cityscapes-dataset.com/
— nuScenes
WWW.Nuscenes.org
— SECOND: Sparsely Embedded Convolutional Detection model
https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf

— TensorFlow benchmarks
https://github.com/tensorflow/benchmarks

Version History

Version Date Document Version History
Version 1.0 September 2019 Initial release.
Version 2.0 September 2019 Added sections on triggering Snapshot copies/FlexClone

volumes using kubectl commands (removed from document in
version 3.0); added section on Kubeflow (“NVIDIA DeepOps”
and “Kubeflow.”); added Figure 9; and updated DeepOps
troubleshooting instructions.

Version 3.0 March 2020 Added section on creating a Snapshot from within a Jupyter
Notebook (“Create a Snapshot of an ONTAP Volume from
Within a Jupyter Notebook”); added example Kubeflow
pipelines (“Create a Kubeflow Pipeline to Execute an End-to-
End Al Training Workflow with Built-in Traceability and

97 NetApp Al Control Plane © 2020 NetApp, Inc. All Rights Reserved.

http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000
https://github.com/NVIDIA/DALI
https://www.tensorflow.org/
https://eng.uber.com/horovod/
https://devblogs.nvidia.com/gpu-containers-runtime/
https://docs.docker.com/
https://kubernetes.io/docs/home/
https://github.com/NVIDIA/deepops
http://www.kubeflow.org/
http://www.jupyter.org/
http://www.image-net.org/
http://cocodataset.org/
https://www.cityscapes-dataset.com/
http://www.nuscenes.org/
https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
https://github.com/tensorflow/benchmarks

Version Date

Version 4.0 May 2020
Version 5.0 June 2020
Version 6.0 October 2020

98

NetApp Al Control Plane

Document Version History

Versioning” and “Create a Kubeflow Pipeline to Rapidly Clone a
Dataset for a Data Scientist Workspace”); added NetApp
Snapshot copies and NetApp FlexClone technology
descriptions to the “Concepts and Components” section; and
reordered sections within document; and removed sections on
triggering Snapshot copies/FlexClone volumes using kubectl
commands (due to Kubernetes API changes).

Added example Kubeflow pipeline (“Create a Kubeflow Pipeline
to Trigger a SnapMirror Volume Replication Update”); added
NetApp SnapMirror technology description (“NetApp SnapMirror
Data Replication Technology”); and updated Abstract and
Introduction.

Added example Jupyter Notebook (“Trigger a Cloud Sync
Replication Update from Within a Jupyter Notebook”); added
example Kubeflow pipeline (“Create a Kubeflow Pipeline to
Trigger a Cloud Sync Replication Update”); updated example
Kubeflow pipeline to use Trident-based annotation cloning
method (“Create a Kubeflow Pipeline to Rapidly Clone a
Dataset for a Data Scientist Workspace”); added NetApp Cloud
Sync technology description (“NetApp Cloud Sync”); added
DeepOps option for deploying Trident (“Install Trident”); fixed
formatting error in the section “Create a Kubeflow Pipeline to
Trigger a SnapMirror Volume Replication Update;” and removed
all references to NKS.

Added Apache Airflow sections (sections “Apache Airflow,”
“Apache Airflow Deployment,” and “Example Apache Airflow
Workflows”); added references to Git repo containing example
Kubeflow pipelines and Jupyter Notebooks (“Example Kubeflow
Operations and Tasks”); added NetApp XCP to “Concepts and
Components;” reworded introduction.

© 2020 NetApp, Inc. All Rights Reserved.

Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact
product and feature versions described in this document are supported for your specific environment. The
NetApp IMT defines the product components and versions that can be used to construct configurations
that are supported by NetApp. Specific results depend on each customer’s installation in accordance with
published specifications.

Copyright Information

Copyright © 2020 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered
by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical,
including photocopying, recording, taping, or storage in an electronic retrieval system—uwithout prior
written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY
DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.
NetApp assumes no responsibility or liability arising from the use of products described herein, except as
expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license
under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to
NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide,
limited irrevocable license to use the Data only in connection with and in support of the U.S. Government
contract under which the Data was delivered. Except as provided herein, the Data may not be used,
disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp,
Inc. United States Government license rights for the Department of Defense are limited to those rights
identified in DFARS clause 252.227-7015(b).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of
NetApp, Inc. Other company and product names may be trademarks of their respective owners.

TR-4798-0720

1 NetApp:

http://mysupport.netapp.com/matrix
http://www.netapp.com/TM

