

Abstract

As organizations increase their use of artificial intelligence (AI), they face many challenges,

including workload scalability and data availability. This document demonstrates how to

address these challenges through the use of NetApp® AI Control Plane, a solution that pairs

NetApp data management capabilities with popular open-source tools and frameworks that

are used by data scientists and data engineers. In this document, we show you how to

rapidly clone a data namespace just as you would a Git repo. We demonstrate how to define

and implement AI training workflows that incorporate the near-instant creation of data and

model baselines for traceability and versioning. We also show how to seamlessly replicate

data across sites and regions and swiftly provision Jupyter Notebook workspaces with

access to massive datasets.

Technical Report

NetApp AI Control Plane

Pairing Popular Open-Source Tools with
NetApp to Enable AI, ML, and DL Data and
Experiment Management
Mike Oglesby, NetApp

October 2020 | TR-4798

2 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

TABLE OF CONTENTS

1 Introduction ... 5

2 Concepts and Components ... 6

2.1 Artificial Intelligence .. 6

2.2 Containers ... 6

2.3 Kubernetes .. 7

2.4 NetApp Trident .. 7

2.5 NVIDIA DeepOps .. 7

2.6 Kubeflow ... 7

2.7 Apache Airflow .. 8

2.8 NetApp ONTAP 9 .. 8

2.9 NetApp Snapshot Copies .. 9

2.10 NetApp FlexClone Technology ... 10

2.11 NetApp SnapMirror Data Replication Technology ... 11

2.12 NetApp Cloud Sync ... 12

2.13 NetApp XCP .. 12

2.14 NetApp ONTAP FlexGroup Volumes .. 12

3 Hardware and Software Requirements... 13

4 Support .. 14

5 Kubernetes Deployment .. 14

5.1 Prerequisites ... 14

5.2 Use NVIDIA DeepOps to Install and Configure Kubernetes ... 15

6 NetApp Trident Deployment and Configuration .. 15

6.1 Prerequisites ... 15

6.2 Install Trident .. 15

6.3 Example Trident Backends for ONTAP AI Deployments .. 16

6.4 Example Kubernetes StorageClasses for ONTAP AI Deployments .. 18

7 Kubeflow Deployment .. 19

7.1 Prerequisites ... 19

7.2 Set Default Kubernetes StorageClass .. 20

7.3 Use NVIDIA DeepOps to Deploy Kubeflow ... 20

8 Example Kubeflow Operations and Tasks ... 24

8.1 Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use ... 25

3 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

8.2 Create a Snapshot of an ONTAP Volume from Within a Jupyter Notebook .. 31

8.3 Trigger a Cloud Sync Replication Update from Within a Jupyter Notebook .. 35

8.4 Create a Kubeflow Pipeline to Execute an End-to-End AI Training Workflow with Built-in Traceability and

Versioning ... 40

8.5 Create a Kubeflow Pipeline to Rapidly Clone a Dataset for a Data Scientist Workspace 54

8.6 Create a Kubeflow Pipeline to Trigger a SnapMirror Volume Replication Update ... 61

8.7 Create a Kubeflow Pipeline to Trigger a Cloud Sync Replication Update ... 62

9 Apache Airflow Deployment .. 64

9.1 Prerequisites ... 64

9.2 Install Helm ... 64

9.3 Set Default Kubernetes StorageClass .. 64

9.4 Use Helm to Deploy Airflow .. 64

10 Example Apache Airflow Workflows .. 67

10.1 Implement an End-to-End AI Training Workflow with Built-in Traceability and Versioning 67

10.2 Rapidly Clone a Dataset to create a Data Scientist Workspace .. 72

10.3 Trigger a SnapMirror Volume Replication Update ... 76

10.4 Trigger a Cloud Sync Replication Update ... 79

10.5 Trigger an XCP Copy or Sync Operation .. 84

11 Example Basic Trident Operations ... 86

11.1 Import an Existing Volume .. 86

11.2 Provision a New Volume ... 88

12 Example High-performance Jobs for ONTAP AI Deployments ... 88

12.1 Execute a Single-Node AI Workload ... 88

12.2 Execute a Synchronous Distributed AI Workload .. 91

13 Performance Testing .. 95

14 Conclusion .. 95

Acknowledgments .. 96

Where to Find Additional Information .. 96

Version History ... 97

LIST OF TABLES

Table 1) Validation environment infrastructure details. ... 14

Table 2) Validation environment software version details. ... 14

4 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Table 3) Performance comparison results. ... 95

LIST OF FIGURES

Figure 1) Solution visualization. .. 5

Figure 2) Virtual machines versus containers. .. 6

Figure 3) Kubeflow visualization. .. 8

Figure 4) NetApp Snapshot copies. .. 10

Figure 5) NetApp FlexClone technology. .. 11

Figure 6) NetApp SnapMirror example. .. 11

Figure 7) Cloud Sync. ... 12

Figure 8) NetApp FlexGroup volumes. ... 13

Figure 9) Synchronous distributed AI job.. 91

5 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Introduction

Companies and organizations of all sizes and across many industries are turning to artificial intelligence

(AI), machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative

products and services, and to get an edge in an increasingly competitive marketplace. As organizations

increase their use of AI, ML, and DL, they face many challenges, including workload scalability and data

availability. This document demonstrates how you can address these challenges by using the NetApp AI

Control Plane, a solution that pairs NetApp data management capabilities with popular open-source tools

and frameworks.

This report shows you how to rapidly clone a data namespace just as you would a Git repo. It also shows

you how to seamlessly replicate data across sites and regions to create a cohesive and unified AI/ML/DL

data pipeline. Additionally, it walks you through the defining and implementing of AI, ML, and DL training

workflows that incorporate the near-instant creation of data and model baselines for traceability and

versioning. With this solution, you can trace every model training run back to the exact dataset that was

used to train and/or validate the model. Lastly, this document shows you how to swiftly provision Jupyter

Notebook workspaces with access to massive datasets.

The NetApp AI Control Plane is targeted towards data scientists and data engineers, and, thus, minimal

NetApp or NetApp ONTAP® expertise is required. With this solution, data management functions can be

executed using simple and familiar tools and interfaces. If you already have NetApp storage in your

environment, you can test drive the NetApp AI Control plane today. If you want to test drive the solution

but you do not have already have NetApp storage, visit cloud.netapp.com, and you can be up and

running with a cloud-based NetApp storage solution in minutes.

Figure 1) Solution visualization.

Core CloudEdge

NetApp® AI Control Plane

NetApp Data Fabric

Data
Scientist

Data
Scientist

Data
Scientist

Data
Engineer

Automated PipelinesWeb-Based Workspace Web-Based Workspace

http://cloud.netapp.com/

6 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Concepts and Components

Artificial Intelligence

AI is a computer science discipline in which computers are trained to mimic the cognitive functions of the

human mind. AI developers train computers to learn and to solve problems in a manner that is similar to,

or even superior to, humans. Deep learning and machine learning are subfields of AI. Organizations are

increasingly adopting AI, ML, and DL to support their critical business needs. Some examples are as

follows:

• Analyzing large amounts of data to unearth previously unknown business insights

• Interacting directly with customers by using natural language processing

• Automating various business processes and functions

Modern AI training and inference workloads require massively parallel computing capabilities. Therefore,

GPUs are increasingly being used to execute AI operations because the parallel processing capabilities

of GPUs are vastly superior to those of general-purpose CPUs.

Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel.

The adoption of containers is increasing rapidly. Containers offer many of the same application

sandboxing benefits that virtual machines (VMs) offer. However, because the hypervisor and guest

operating system layers that VMs rely on have been eliminated, containers are far more lightweight. See

Figure 2 for a visualization.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly

with an application. The most commonly used container packaging format is the Docker container. An

application that has been containerized in the Docker container format can be executed on any machine

that can run Docker containers. This is true even if the application’s dependencies are not present on the

machine because all dependencies are packaged in the container itself. For more information, visit the

Docker website.

Figure 2) Virtual machines versus containers.

Physical Infrastructure Physical Infrastructure

Host Operating System

Hypervisor

Host Operating System

Guest Operating System Guest Operating System

Dependencies

Application A

Dependencies

Application B

Container Runtime

Dependencies

Application A

Dependencies

Application B

Virtual Machines (VMs) Containers

https://www.docker.com/

7 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed

by Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes

enables the automation of deployment, management, and scaling functions for containerized applications.

In recent years, Kubernetes has emerged as the dominant container orchestration platform. Although

other container packaging formats and run times are supported, Kubernetes is most often used as an

orchestration system for Docker containers. For more information, visit the Kubernetes website.

NetApp Trident

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly

simplifies the creation, management, and consumption of persistent storage for Kubernetes workloads.

Trident, itself a Kubernetes-native application, runs directly within a Kubernetes cluster. With Trident,

Kubernetes users (developers, data scientists, Kubernetes administrators, and so on) can create,

manage, and interact with persistent storage volumes in the standard Kubernetes format that they are

already familiar with. At the same time, they can take advantage of NetApp advanced data management

capabilities and a data fabric that is powered by NetApp technology. Trident abstracts away the

complexities of persistent storage and makes it simple to consume. For more information, visit the Trident

website.

NVIDIA DeepOps

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of

GPU server clusters according to best practices. DeepOps is modular and can be used for various

deployment tasks. For this document and the validation exercise that it describes, DeepOps is used to

deploy a Kubernetes cluster that consists of GPU server worker nodes. For more information, visit the

DeepOps website.

Kubeflow

Kubeflow is an open source AI and ML toolkit for Kubernetes that was originally developed by Google.

The Kubeflow project makes deployments of AI and ML workflows on Kubernetes simple, portable, and

scalable. Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what

they know best―data science. See Figure 3 for a visualization. Kubeflow has been gaining significant

traction as enterprise IT departments have increasingly standardized on Kubernetes. For more

information, visit the Kubeflow website.

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for

defining and deploying portable and scalable AI and ML workflows. For more information, see the official

Kubeflow documentation.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows data scientists to create wiki-

like documents called Jupyter Notebooks that contain live code as well as descriptive test. Jupyter

Notebooks are widely used in the AI and ML community as a means of documenting, storing, and sharing

AI and ML projects. Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on

Kubernetes. For more information on Jupyter Notebooks, visit the Jupyter website. For more information

about Jupyter Notebooks within the context of Kubeflow, see the official Kubeflow documentation.

https://kubernetes.io/
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://github.com/NVIDIA/deepops
http://www.kubeflow.org/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://www.jupyter.org/
https://www.kubeflow.org/docs/components/jupyter/

8 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Figure 3) Kubeflow visualization.

Apache Airflow

Apache Airflow is an open-source workflow management platform that enables programmatic authoring,

scheduling, and monitoring for complex enterprise workflows. It is often used to automate ETL and data

pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by

Airbnb but has since become very popular in the industry and now falls under the auspices of The

Apache Software Foundation. Airflow is written in Python, Airflow workflows are created via Python

scripts, and Airflow is designed under the principle of "configuration as code.” Many enterprise Airflow

users now run Airflow on top of Kubernetes.

Directed Acyclic Graphs (DAGs)

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are

executed in sequence, in parallel, or a combination of the two, depending on the DAG definition. The

Airflow scheduler executes individual tasks on an array of workers, adhering to the task-level

dependencies that are specified in the DAG definition. DAGs are defined and created via Python scripts.

NetApp ONTAP 9

NetApp ONTAP 9 is the latest generation of storage management software from NetApp that enables

businesses like yours to modernize infrastructure and to transition to a cloud-ready data center. With

industry-leading data management capabilities, ONTAP enables you to manage and protect your data

with a single set of tools regardless of where that data resides. You can also move data freely to

wherever you need it: the edge, the core, or the cloud. ONTAP 9 includes numerous features that simplify

data management, accelerate and protect your critical data, and future-proof your infrastructure across

hybrid cloud architectures.

Persistent storage

Orchestration

Compute/Cloud

AI/ML workloads

NetApp Data Fabric

Automation

?

9 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Simplify Data Management

Data management is crucial for your enterprise IT operations so that you can use appropriate resources

for your applications and datasets. ONTAP includes the following features to streamline and simplify your

operations and reduce your total cost of operation:

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space
inside storage blocks, and deduplication significantly increases effective capacity.

• Minimum, maximum, and adaptive quality of service (QoS). Granular QoS controls help maintain
performance levels for critical applications in highly shared environments.

• ONTAP FabricPool. This feature provides automatic tiering of cold data to public and private cloud
storage options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID® object-
based storage.

Accelerate and Protect Data

ONTAP delivers superior levels of performance and data protection and extends these capabilities with

the following features:

• High performance and low latency. ONTAP offers the highest possible throughput at the lowest
possible latency.

• NetApp ONTAP FlexGroup technology. A FlexGroup volume is a high-performance data container
that can scale linearly to up to 20PB and 400 billion files, providing a single namespace that simplifies
data management.

• Data protection. ONTAP provides built-in data protection capabilities with common management
across all platforms.

• NetApp Volume Encryption. ONTAP offers native volume-level encryption with both onboard and
external key management support.

Future-Proof Infrastructure

ONTAP 9 helps meet your demanding and constantly changing business needs:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of
capacity to existing controllers and to scale-out clusters. You can upgrade to the latest technologies,
such as NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is one of the most cloud-connected storage management software, with
options for software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud
Volumes Service) in all public clouds.

• Integration with emerging applications. By using the same infrastructure that supports existing
enterprise apps, ONTAP offers enterprise-grade data services for next-generation platforms and
applications such as OpenStack, Hadoop, and MongoDB.

NetApp Snapshot Copies

A NetApp Snapshot™ copy is a read-only, point-in-time image of a volume. The image consumes minimal

storage space and incurs negligible performance overhead because it only records changes to files

create since the last Snapshot copy was made.

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write

Anywhere File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on

disk. But, unlike a database, WAFL does not overwrite existing blocks. It writes updated data to a new

block and changes the metadata. It's because ONTAP references metadata when it creates a Snapshot

copy, rather than copying data blocks, that Snapshot copies are so efficient. Doing so eliminates the

"seek time" that other systems incur in locating the blocks to copy, as well as the cost of making the copy

itself.

10 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

You can use a Snapshot copy to recover individual files or LUNs or to restore the entire contents of a

volume. ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the

missing or damaged object, without downtime or a significant performance cost.

Figure 4) NetApp Snapshot copies.

NetApp FlexClone Technology

NetApp FlexClone® technology references Snapshot metadata to create writable, point-in-time copies of a

volume. Copies share data blocks with their parents, consuming no storage except what is required for

metadata, until changes are written to the copy. Where traditional copies can take minutes or even hours

to create, FlexClone software lets you copy even the largest datasets almost instantaneously. That

makes it ideal for situations in which you need multiple copies of identical datasets (a development

workspace, for example) or temporary copies of a dataset (testing an application against a production

dataset).

11 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Figure 5) NetApp FlexClone technology.

NetApp SnapMirror Data Replication Technology

NetApp SnapMirror® software is a cost-effective, easy-to-use unified replication solution across the data

fabric. It replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data

replication for applications of all types, including business critical applications in both virtual and

traditional environments. When you replicate data to one or more NetApp storage systems and

continually update the secondary data, your data is kept current and is available whenever you need it.

No external replication servers are required. See Figure 6 for an example of an architecture that

leverages SnapMirror technology.

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over

the network. SnapMirror software also uses built-in network compression to accelerate data transfers and

reduce network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one

thin replication data stream to create a single repository that maintains both the active mirror and prior

point-in-time copies, reducing network traffic by up to 50%.

Figure 6) NetApp SnapMirror example.

CloudCoreEdge

Infrastructure provisioning
Dev/Test automation

Infrastructure as code

NetApp Snapshot™ copies
Dataset/model vers ions

A/B tes ting

NetApp Cloud Sync/SnapMirror
Dev/Test or burst in cloud

NetApp SnapMirror®

Snapshot copies
Dataset/model/code vers ions

A/B tes ting
NetApp® Data Fabric

Object s torage
Cold data tiering

Data lake

12 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

NetApp Cloud Sync

Cloud Sync is a NetApp service for rapid and secure data synchronization. Whether you need to transfer

files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp

Cloud Volumes Service, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or

IBM Cloud Object Storage, Cloud Sync moves the files where you need them quickly and securely.

After your data is transferred, it is fully available for use on both source and target. Cloud Sync can sync

data on-demand when an update is triggered or continuously sync data based on a predefined schedule.

Regardless, Cloud Sync only moves the deltas, so time and money spent on data replication is

minimized.

Cloud Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data

transfers that are triggered by Cloud Sync are carried out by data brokers. Cloud Sync data brokers can

be deployed in AWS, Azure, Google Cloud Platform, or on-premises.

Figure 7) Cloud Sync.

NetApp XCP

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file

system insights. XCP is designed to scale and achieve maximum performance by utilizing all available

system resources to handle high-volume datasets and high-performance migrations. XCP helps you to

gain complete visibility into the file system with the option to generate reports.

NetApp XCP is available in a single package that supports NFS and SMB protocols. XCP includes a

Linux binary for NFS data sets and a windows executable for SMB data sets.

NetApp XCP File Analytics is host-based software that detects file shares, runs scans on the file system,

and provides a dashboard for file analytics. XCP File Analytics is compatible with both NetApp and non-

NetApp systems and runs on Linux or Windows hosts to provide analytics for NFS and SMB-exported file

systems.

NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video,

and other forms of unstructured data that must be stored and processed to be read in parallel. The

13 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

storage system must store large numbers of small files and must read those files in parallel for sequential

and random I/O.

A FlexGroup volume (Figure 8) is a single namespace that comprises multiple constituent member

volumes. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a

NetApp FlexVol® volume. Files in a FlexGroup volume are allocated to individual member volumes and

are not striped across volumes or nodes. They enable the following capabilities:

• FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-
metadata workloads.

• They support up to 400 billion files in the same namespace.

• They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and
constituent FlexVol volumes.

Figure 8) NetApp FlexGroup volumes.

Hardware and Software Requirements

All procedures outlined in this document were validated on the NetApp ONTAP AI converged

infrastructure solution described in NVA-1121. This verified architecture pairs a NetApp AFF A800 all-

flash storage system with the NVIDIA DGX-1 Deep Learning System using Cisco Nexus networking. For

this validation exercise, two bare-metal NVIDIA DGX-1 systems, each featuring eight NVIDIA V100

GPUs, were used as Kubernetes worker nodes. A NetApp AFF A800 all-flash storage system provided a

single persistent storage namespace across nodes, and two Cisco Nexus 3232C switches were used to

provide network connectivity. Three virtual machines (VMs) that ran on a separate physical server outside

of the ONTAP AI pod were used as Kubernetes master nodes. See Table 1 for validation environment

infrastructure details. See Table 2 for validation environment software version details.

Note, however, that the NetApp AI Control Plane solution that is outlined in this document is not

dependent on this specific hardware. The solution is compatible with any NetApp physical storage

appliance, software-defined instance, or cloud service, that supports the NFS protocol. Examples include

a NetApp AFF storage system, Azure NetApp Files, NetApp Cloud Volumes Service, a NetApp ONTAP

Select software-defined storage instance, or a NetApp Cloud Volumes ONTAP instance. Additionally, the

solution can be implemented on any Kubernetes cluster as long as the Kubernetes version used is

supported by Kubeflow and NetApp Trident. For a list of Kubernetes versions that are supported by

Kubeflow, see the see the official Kubeflow documentation. For a list of Kubernetes versions that are

supported by Trident, see the Trident documentation.

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/

14 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Table 1) Validation environment infrastructure details.

Component Quantity Details Operating System

Deployment jump host 1 VM Ubuntu 18.04.5 LTS

Kubernetes master nodes 3 VM Ubuntu 18.04.5 LTS

Kubernetes worker nodes 2 NVIDIA DGX-1 (bare-metal) NVIDIA DGX OS 4.0.5

(based on Ubuntu 18.04.2 LTS)

Storage 1 HA Pair NetApp AFF A800 NetApp ONTAP 9.6 P1

Network connectivity 2 Cisco Nexus 3232C Cisco NX-OS 7.0(3)I6(1)

Table 2) Validation environment software version details.

Component Version

Apache Airflow 1.10.12

Apache Airflow Helm Chart 7.10.1

Cisco NX-OS 7.0(3)I6(1)

Docker 18.09.7

Kubeflow 1.0

Kubernetes 1.17.9

NetApp ONTAP 9.6 P1

NetApp Trident 20.07

NVIDIA DeepOps 20.08.1

NVIDIA DGX OS 4.0.5 (based on Ubuntu 18.04.2 LTS)

Ubuntu 18.04.5 LTS

Support

NetApp does not offer enterprise support for Apache Airflow, Docker, Kubeflow, Kubernetes, or NVIDIA

DeepOps. If you are interested in a fully supported solution with capabilities similar to the NetApp AI

Control Plane solution, contact NetApp about fully supported AI/ML solutions that NetApp offers jointly

with partners.

Kubernetes Deployment

This section describes the tasks that you must complete to deploy a Kubernetes cluster in which to

implement the NetApp AI Control Plane solution. If you already have a Kubernetes cluster, then you can

skip this section as long as you are running a version of Kubernetes that is supported by Kubeflow and

NetApp Trident. For a list of Kubernetes versions that are supported by Kubeflow, see the see the official

Kubeflow documentation. For a list of Kubernetes versions that are supported by Trident, see the Trident

documentation.

For on-premises Kubernetes deployments that incorporate bare-metal nodes featuring NVIDIA GPU(s),

NetApp recommends using NVIDIA’s DeepOps Kubernetes deployment tool. This section outlines the

deployment of a Kubernetes cluster using DeepOps.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have

already performed the following tasks:

https://www.netapp.com/us/contact-us/index.aspx?for_cr=us
https://www.kubeflow.org/docs/started/getting-started/
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/

15 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

1. You have already configured any bare-metal Kubernetes nodes (for example, an NVIDIA DGX
system that is part of an ONTAP AI pod) according to standard configuration instructions.

2. You have installed a supported operating system on all Kubernetes master and worker nodes and on
a deployment jump host. For a list of operating systems that are supported by DeepOps, see the
DeepOps GitHub site.

Use NVIDIA DeepOps to Install and Configure Kubernetes

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the following tasks from

a deployment jump host:

1. Download NVIDIA DeepOps by following the instructions on the Getting Started page on the NVIDIA
DeepOps GitHub site.

2. Deploy Kubernetes in your cluster by following the instructions on the Kubernetes Deployment Guide
page on the NVIDIA DeepOps GitHub site.

 For the DeepOps Kubernetes deployment to work, the same user must exist on all
Kubernetes master and worker nodes.

If the deployment fails, change the value of kubectl_localhost to false in

deepops/config/group_vars/k8s-cluster.yml and repeat step 2. The Copy kubectl binary

to ansible host task, which executes only when the value of kubectl_localhost is true, relies

on the fetch Ansible module, which has known memory usage issues. These memory usage issues can

sometimes cause the task to fail. If the task fails because of a memory issue, then the remainder of the

deployment operation does not complete successfully.

If the deployment completes successfully after you have changed the value of kubectl_localhost to

false, then you must manually copy the kubectl binary from a Kubernetes master node to the

deployment jump host. You can find the location of the kubectl binary on a specific master node by

executing the command which kubectl directly on that node.

NetApp Trident Deployment and Configuration

This section describes the tasks that you must complete to install and configure NetApp Trident in your

Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have

already performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is
supported by Trident. For a list of supported versions, see the Trident documentation.

2. You already have a working NetApp storage appliance, software-defined instance, or cloud storage
service, that supports the NFS protocol.

Install Trident

To install and configure NetApp Trident in your Kubernetes cluster, perform the following tasks from the

deployment jump host:

1. Deploy Trident using one of the following methods:

a. If you used NVIDIA DeepOps to deploy your Kubernetes cluster, you can also use NVIDIA
DeepOps to deploy Trident in your Kubernetes cluster. To deploy Trident with DeepOps, follow
the Trident deployment instructions on the NVIDIA DeepOps GitHub site.

https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops/blob/master/docs/getting-started.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md
https://netapp-trident.readthedocs.io/
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md#netapp-trident

16 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

b. If you did not use NVIDIA DeepOps to deploy your Kubernetes cluster or if you simply prefer to
deploy Trident manually, you can deploy Trident by following the deployment instructions in the
Trident documentation. Be sure to create at least one Trident backend and at least one
Kubernetes StorageClass. For more information about backends and StorageClasses, see the
Trident documentation.

 If you are deploying the NetApp AI Control Plane solution on an ONTAP AI pod, see the
section “Example Trident Backends for ONTAP AI Deployments” for some examples of
different Trident backends that you might want to create and the section “Example
Kubernetes StorageClasses for ONTAP AI Deployments” for some examples of different
Kubernetes StorageClasses that you might want to create.

Example Trident Backends for ONTAP AI Deployments

Before you can use Trident to dynamically provision storage resources within your Kubernetes cluster,

you must create one or more Trident backends. The examples that follow represent different types of

backends that you might want to create if you are deploying the NetApp AI Control Plane solution on an

ONTAP AI pod. For more information about backends, see the Trident documentation.

1. NetApp recommends creating a FlexGroup-enabled Trident backend for each data LIF (logical
network interface that provides data access) that you want to use on your NetApp AFF system. Due
to NFS protocol limitations, a single NFS mount can provide only 1.5GBps to 2GBps of bandwidth. If
you need more bandwidth for a job, Trident enables you to add multiple NFS mounts (mounting the
same NFS volume multiple times) quickly and easily when you create a Kubernetes pod. For
maximum performance, these multiple mounts should be distributed across different data LIFs. You
must create a Trident backend for each data LIF that you want to use for these mounts.

The example commands that follow show the creation of two FlexGroup-enabled Trident backends
for two different data LIFs that are associated with the same ONTAP storage virtual machine (SVM).
These backends use the ontap-nas-flexgroup storage driver. ONTAP supports two main data

volume types: FlexVol and FlexGroup. FlexVol volumes are size-limited (as of this writing, the
maximum size depends on the specific deployment). FlexGroup volumes, on the other hand, can
scale linearly to up to 20PB and 400 billion files, providing a single namespace that greatly simplifies
data management. Therefore, FlexGroup volumes are optimal for AI and ML workloads that rely on
large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup
volumes, you can create Trident backends that use the ontap-nas storage driver instead of the

ontap-nas-flexgroup storage driver.

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface1.json

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "backendName": "ontap-ai-flexgroups-iface1",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-iface1.json -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface2.json

https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/

17 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "backendName": "ontap-ai-flexgroups-iface2",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.12.12",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-iface2.json -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

$ tridentctl get backend -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd |

online | 0 |

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

2. NetApp also recommends creating one or more FlexVol-enabled Trident backends. If you use
FlexGroup volumes for training dataset storage, you might want to use FlexVol volumes for storing
results, output, debug information, and so on. If you want to use FlexVol volumes, you must create
one or more FlexVol-enabled Trident backends. The example commands that follow show the
creation of a single FlexVol-enabled Trident backend that uses a single data LIF.

$ cat << EOF > ./trident-backend-ontap-ai-flexvols.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap-ai-flexvols",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexvols.json -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-52a69657fabe |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

$ tridentctl get backend -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

18 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-52a69657fabe |

online | 0 |

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd |

online | 0 |

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

Example Kubernetes StorageClasses for ONTAP AI Deployments

Before you can use Trident to dynamically provision storage resources within your Kubernetes cluster,

you must create one or more Kubernetes StorageClasses. The examples that follow represent different

types of StorageClasses that you might want to create if you are deploying the NetApp AI Control Plane

solution on an ONTAP AI pod. For more information about StorageClasses, see the Trident

documentation.

1. NetApp recommends creating a separate StorageClass for each FlexGroup-enabled Trident backend
that you created in the section “Example Trident Backends for ONTAP AI Deployments,” step 1.
These granular StorageClasses enable you to add NFS mounts that correspond to specific LIFs (the
LIFs that you specified when you created the Trident backends) as a particular backend that is
specified in the StorageClass spec file. The example commands that follow show the creation of two
StorageClasses that correspond to the two example backends that were created in the section
“Example Trident Backends for ONTAP AI Deployments,” step 1. The highlighted text shows where
the Trident backend is specified in the StorageClass definition file. For more information about
StorageClasses, see the Trident documentation.

 So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim
(PVC) is deleted, the following example uses a reclaimPolicy value of Retain. For more
information about the reclaimPolicy field, see the official Kubernetes documentation.

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface1.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexgroups-retain-iface1

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas-flexgroup"

 storagePools: "ontap-ai-flexgroups-iface1:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-iface1.yaml

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface1 created

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexgroups-retain-iface2

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas-flexgroup"

 storagePools: "ontap-ai-flexgroups-iface2:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface2 created

$ kubectl get storageclass

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain-iface1 netapp.io/trident 0m

ontap-ai-flexgroups-retain-iface2 netapp.io/trident 0m

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident
backend that you created in the section “Example Trident Backends for ONTAP AI Deployments,”

https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/storage-classes/

19 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

step 2. The example commands that follow show the creation of a single StorageClass for FlexVol
volumes.

 In the following example, a particular backend is not specified in the StorageClass definition
file because only one FlexVol-enabled Trident backend was created in the section “Install
Trident,” step 2. When you use Kubernetes to administer volumes that use this StorageClass,
Trident attempts to use any available backend that uses the ontap-nas driver.

$ cat << EOF > ./storage-class-ontap-ai-flexvols-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexvols-retain

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexvols-retain.yaml

storageclass.storage.k8s.io/ontap-ai-flexvols-retain created

$ kubectl get storageclass

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain-iface1 netapp.io/trident 1m

ontap-ai-flexgroups-retain-iface2 netapp.io/trident 1m

ontap-ai-flexvols-retain netapp.io/trident 0m

3. NetApp also recommends creating a generic StorageClass for FlexGroup volumes. The following
example commands show the creation of a single generic StorageClass for FlexGroup volumes. Note
that a particular backend is not specified in the StorageClass definition file. Therefore, when you use
Kubernetes to administer volumes that use this StorageClass, Trident attempts to use any available
backend that uses the ontap-nas-flexgroup driver.

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexgroups-retain

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas-flexgroup"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain.yaml

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain created

$ kubectl get storageclass

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain netapp.io/trident 0m

ontap-ai-flexgroups-retain-iface1 netapp.io/trident 2m

ontap-ai-flexgroups-retain-iface2 netapp.io/trident 2m

ontap-ai-flexvols-retain netapp.io/trident 1m

Kubeflow Deployment

This section describes the tasks that you must complete to deploy Kubeflow in your Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have

already performed the following tasks:

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is
supported by Kubeflow. For a list of supported versions, see the official Kubeflow documentation.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in
the section “NetApp Trident Deployment and Configuration.”

https://www.kubeflow.org/docs/started/getting-started/

20 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Set Default Kubernetes StorageClass

Before you deploy Kubeflow, you must designate a default StorageClass within your Kubernetes cluster.

The Kubeflow deployment process attempts to provision new persistent volumes using the default

StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment fails.

To designate a default StorageClass within your cluster, perform the following task from the deployment

jump host. If you have already designated a default StorageClass within your cluster, then you can skip

this step.

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands
that follow show the designation of a StorageClass named ontap-ai-flexvols-retain as the

default StorageClass.

 The ontap-nas-flexgroup Trident backend type has a minimum PVC size of 800GB. By
default, Kubeflow attempts to provision PVCs that are smaller than 800GB. Therefore, you
should not designate a StorageClass that utilizes the ontap-nas-flexgroup backend type
as the default StorageClass for the purposes of Kubeflow deployment.

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain csi.trident.netapp.io 3s

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain (default) csi.trident.netapp.io 54s

Use NVIDIA DeepOps to Deploy Kubeflow

NetApp recommends using the Kubeflow deployment tool that is provided by NVIDIA DeepOps. To

deploy Kubeflow in your Kubernetes cluster using the DeepOps deployment tool, perform the following

tasks from the deployment jump host.

Note: Alternatively, you can deploy Kubeflow manually by following the installation instructions in the
official Kubeflow documentation

1. Deploy Kubeflow in your cluster by following the Kubeflow deployment instructions on the NVIDIA
DeepOps GitHub site.

2. Note down the Kubeflow Dashboard URL that the DeepOps Kubeflow deployment tool outputs.

$./scripts/k8s_deploy_kubeflow.sh

…

INFO[0007] Applied the configuration Successfully! filename="cmd/apply.go:72"

Kubeflow app installed to: /home/ai/kubeflow

It may take several minutes for all services to start. Run 'kubectl get pods -n kubeflow' to

verify

To remove (excluding CRDs, istio, auth, and cert-manager), run: ./scripts/k8s_deploy_kubeflow.sh

-d

To perform a full uninstall : ./scripts/k8s_deploy_kubeflow.sh -D

Kubeflow Dashboard (HTTP NodePort): http://10.61.188.111:31380

3. Confirm that all pods deployed within the Kubeflow namespace show a STATUS of Running and

confirm that no components deployed within the namespace are in an error state.

https://www.kubeflow.org/docs/started/getting-started/
https://github.com/NVIDIA/deepops/blob/master/docs/k8s-cluster/kubeflow.md

21 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

$ kubectl get all -n kubeflow

NAME READY STATUS RESTARTS AGE

pod/admission-webhook-bootstrap-stateful-set-0 1/1 Running 0 95s

pod/admission-webhook-deployment-6b89c84c98-vrtbh 1/1 Running 0 91s

pod/application-controller-stateful-set-0 1/1 Running 0 98s

pod/argo-ui-5dcf5d8b4f-m2wn4 1/1 Running 0 97s

pod/centraldashboard-cf4874ddc-7hcr8 1/1 Running 0 97s

pod/jupyter-web-app-deployment-685b455447-gjhh7 1/1 Running 0 96s

pod/katib-controller-88c97d85c-kgq66 1/1 Running 1 95s

pod/katib-db-8598468fd8-5jw2c 1/1 Running 0 95s

pod/katib-manager-574c8c67f9-wtrf5 1/1 Running 1 95s

pod/katib-manager-rest-778857c989-fjbzn 1/1 Running 0 95s

pod/katib-suggestion-bayesianoptimization-65df4d7455-qthmw 1/1 Running 0 94s

pod/katib-suggestion-grid-56bf69f597-98vwn 1/1 Running 0 94s

pod/katib-suggestion-hyperband-7777b76cb9-9v6dq 1/1 Running 0 93s

pod/katib-suggestion-nasrl-77f6f9458c-2qzxq 1/1 Running 0 93s

pod/katib-suggestion-random-77b88b5c79-l64j9 1/1 Running 0 93s

pod/katib-ui-7587c5b967-nd629 1/1 Running 0 95s

pod/metacontroller-0 1/1 Running 0 96s

pod/metadata-db-5dd459cc-swzkm 1/1 Running 0 94s

pod/metadata-deployment-6cf77db994-69fk7 1/1 Running 3 93s

pod/metadata-deployment-6cf77db994-mpbjt 1/1 Running 3 93s

pod/metadata-deployment-6cf77db994-xg7tz 1/1 Running 3 94s

pod/metadata-ui-78f5b59b56-qb6kr 1/1 Running 0 94s

pod/minio-758b769d67-llvdr 1/1 Running 0 91s

pod/ml-pipeline-5875b9db95-g8t2k 1/1 Running 0 91s

pod/ml-pipeline-persistenceagent-9b69ddd46-bt9r9 1/1 Running 0 90s

pod/ml-pipeline-scheduledworkflow-7b8d756c76-7x56s 1/1 Running 0 90s

pod/ml-pipeline-ui-79ffd9c76-fcwpd 1/1 Running 0 90s

pod/ml-pipeline-viewer-controller-deployment-5fdc87f58-b2t9r 1/1 Running 0 90s

pod/mysql-657f87857d-l5k9z 1/1 Running 0 91s

pod/notebook-controller-deployment-56b4f59bbf-8bvnr 1/1 Running 0 92s

pod/profiles-deployment-6bc745947-mrdkh 2/2 Running 0 90s

pod/pytorch-operator-77c97f4879-hmlrv 1/1 Running 0 92s

pod/seldon-operator-controller-manager-0 1/1 Running 1 91s

pod/spartakus-volunteer-5fdfddb779-l7qkm 1/1 Running 0 92s

pod/tensorboard-6544748d94-nh8b2 1/1 Running 0 92s

pod/tf-job-dashboard-56f79c59dd-6w59t 1/1 Running 0 92s

pod/tf-job-operator-79cbfd6dbc-rb58c 1/1 Running 0 91s

pod/workflow-controller-db644d554-cwrnb 1/1 Running 0 97s

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

service/admission-webhook-service ClusterIP 10.233.51.169 <none>

443/TCP 97s

service/application-controller-service ClusterIP 10.233.4.54 <none>

443/TCP 98s

service/argo-ui NodePort 10.233.47.191 <none>

80:31799/TCP 97s

service/centraldashboard ClusterIP 10.233.8.36 <none>

80/TCP 97s

service/jupyter-web-app-service ClusterIP 10.233.1.42 <none>

80/TCP 97s

service/katib-controller ClusterIP 10.233.25.226 <none>

443/TCP 96s

service/katib-db ClusterIP 10.233.33.151 <none>

3306/TCP 97s

service/katib-manager ClusterIP 10.233.46.239 <none>

6789/TCP 96s

service/katib-manager-rest ClusterIP 10.233.55.32 <none>

80/TCP 96s

service/katib-suggestion-bayesianoptimization ClusterIP 10.233.49.191 <none>

6789/TCP 95s

service/katib-suggestion-grid ClusterIP 10.233.9.105 <none>

6789/TCP 95s

service/katib-suggestion-hyperband ClusterIP 10.233.22.2 <none>

6789/TCP 95s

service/katib-suggestion-nasrl ClusterIP 10.233.63.73 <none>

6789/TCP 95s

22 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

service/katib-suggestion-random ClusterIP 10.233.57.210 <none>

6789/TCP 95s

service/katib-ui ClusterIP 10.233.6.116 <none>

80/TCP 96s

service/metadata-db ClusterIP 10.233.31.2 <none>

3306/TCP 96s

service/metadata-service ClusterIP 10.233.27.104 <none>

8080/TCP 96s

service/metadata-ui ClusterIP 10.233.57.177 <none>

80/TCP 96s

service/minio-service ClusterIP 10.233.44.90 <none>

9000/TCP 94s

service/ml-pipeline ClusterIP 10.233.41.201 <none>

8888/TCP,8887/TCP 94s

service/ml-pipeline-tensorboard-ui ClusterIP 10.233.36.207 <none>

80/TCP 93s

service/ml-pipeline-ui ClusterIP 10.233.61.150 <none>

80/TCP 93s

service/mysql ClusterIP 10.233.55.117 <none>

3306/TCP 94s

service/notebook-controller-service ClusterIP 10.233.10.166 <none>

443/TCP 95s

service/profiles-kfam ClusterIP 10.233.33.79 <none>

8081/TCP 92s

service/pytorch-operator ClusterIP 10.233.37.112 <none>

8443/TCP 95s

service/seldon-operator-controller-manager-service ClusterIP 10.233.30.178 <none>

443/TCP 92s

service/tensorboard ClusterIP 10.233.58.151 <none>

9000/TCP 94s

service/tf-job-dashboard ClusterIP 10.233.4.17 <none>

80/TCP 94s

service/tf-job-operator ClusterIP 10.233.60.32 <none>

8443/TCP 94s

service/webhook-server-service ClusterIP 10.233.32.167 <none>

443/TCP 87s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/admission-webhook-deployment 1/1 1 1 97s

deployment.apps/argo-ui 1/1 1 1 97s

deployment.apps/centraldashboard 1/1 1 1 97s

deployment.apps/jupyter-web-app-deployment 1/1 1 1 97s

deployment.apps/katib-controller 1/1 1 1 96s

deployment.apps/katib-db 1/1 1 1 97s

deployment.apps/katib-manager 1/1 1 1 96s

deployment.apps/katib-manager-rest 1/1 1 1 96s

deployment.apps/katib-suggestion-bayesianoptimization 1/1 1 1 95s

deployment.apps/katib-suggestion-grid 1/1 1 1 95s

deployment.apps/katib-suggestion-hyperband 1/1 1 1 95s

deployment.apps/katib-suggestion-nasrl 1/1 1 1 95s

deployment.apps/katib-suggestion-random 1/1 1 1 95s

deployment.apps/katib-ui 1/1 1 1 96s

deployment.apps/metadata-db 1/1 1 1 96s

deployment.apps/metadata-deployment 3/3 3 3 96s

deployment.apps/metadata-ui 1/1 1 1 96s

deployment.apps/minio 1/1 1 1 94s

deployment.apps/ml-pipeline 1/1 1 1 94s

deployment.apps/ml-pipeline-persistenceagent 1/1 1 1 93s

deployment.apps/ml-pipeline-scheduledworkflow 1/1 1 1 93s

deployment.apps/ml-pipeline-ui 1/1 1 1 93s

deployment.apps/ml-pipeline-viewer-controller-deployment 1/1 1 1 93s

deployment.apps/mysql 1/1 1 1 94s

deployment.apps/notebook-controller-deployment 1/1 1 1 95s

deployment.apps/profiles-deployment 1/1 1 1 92s

deployment.apps/pytorch-operator 1/1 1 1 95s

deployment.apps/spartakus-volunteer 1/1 1 1 94s

deployment.apps/tensorboard 1/1 1 1 94s

deployment.apps/tf-job-dashboard 1/1 1 1 94s

deployment.apps/tf-job-operator 1/1 1 1 94s

deployment.apps/workflow-controller 1/1 1 1 97s

23 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

NAME DESIRED CURRENT READY

AGE

replicaset.apps/admission-webhook-deployment-6b89c84c98 1 1 1

97s

replicaset.apps/argo-ui-5dcf5d8b4f 1 1 1

97s

replicaset.apps/centraldashboard-cf4874ddc 1 1 1

97s

replicaset.apps/jupyter-web-app-deployment-685b455447 1 1 1

97s

replicaset.apps/katib-controller-88c97d85c 1 1 1

96s

replicaset.apps/katib-db-8598468fd8 1 1 1

97s

replicaset.apps/katib-manager-574c8c67f9 1 1 1

96s

replicaset.apps/katib-manager-rest-778857c989 1 1 1

96s

replicaset.apps/katib-suggestion-bayesianoptimization-65df4d7455 1 1 1

95s

replicaset.apps/katib-suggestion-grid-56bf69f597 1 1 1

95s

replicaset.apps/katib-suggestion-hyperband-7777b76cb9 1 1 1

95s

replicaset.apps/katib-suggestion-nasrl-77f6f9458c 1 1 1

95s

replicaset.apps/katib-suggestion-random-77b88b5c79 1 1 1

95s

replicaset.apps/katib-ui-7587c5b967 1 1 1

96s

replicaset.apps/metadata-db-5dd459cc 1 1 1

96s

replicaset.apps/metadata-deployment-6cf77db994 3 3 3

96s

replicaset.apps/metadata-ui-78f5b59b56 1 1 1

96s

replicaset.apps/minio-758b769d67 1 1 1

93s

replicaset.apps/ml-pipeline-5875b9db95 1 1 1

93s

replicaset.apps/ml-pipeline-persistenceagent-9b69ddd46 1 1 1

92s

replicaset.apps/ml-pipeline-scheduledworkflow-7b8d756c76 1 1 1

91s

replicaset.apps/ml-pipeline-ui-79ffd9c76 1 1 1

91s

replicaset.apps/ml-pipeline-viewer-controller-deployment-5fdc87f58 1 1 1

91s

replicaset.apps/mysql-657f87857d 1 1 1

92s

replicaset.apps/notebook-controller-deployment-56b4f59bbf 1 1 1

94s

replicaset.apps/profiles-deployment-6bc745947 1 1 1

91s

replicaset.apps/pytorch-operator-77c97f4879 1 1 1

94s

replicaset.apps/spartakus-volunteer-5fdfddb779 1 1 1

94s

replicaset.apps/tensorboard-6544748d94 1 1 1

93s

replicaset.apps/tf-job-dashboard-56f79c59dd 1 1 1

93s

replicaset.apps/tf-job-operator-79cbfd6dbc 1 1 1

93s

replicaset.apps/workflow-controller-db644d554 1 1 1

97s

NAME READY AGE

statefulset.apps/admission-webhook-bootstrap-stateful-set 1/1 97s

statefulset.apps/application-controller-stateful-set 1/1 98s

24 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

statefulset.apps/metacontroller 1/1 98s

statefulset.apps/seldon-operator-controller-manager 1/1 92s

$ kubectl get pvc -n kubeflow

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

katib-mysql Bound pvc-b07f293e-d028-11e9-9b9d-00505681a82d 10Gi RWO

ontap-ai-flexvols-retain 27m

metadata-mysql Bound pvc-b0f3f032-d028-11e9-9b9d-00505681a82d 10Gi RWO

ontap-ai-flexvols-retain 27m

minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d 20Gi RWO

ontap-ai-flexvols-retain 27m

mysql-pv-claim Bound pvc-b2429afd-d028-11e9-9b9d-00505681a82d 20Gi RWO

ontap-ai-flexvols-retain 27m

4. In your web browser, access the Kubeflow central dashboard by navigating to the URL that you noted
down in step 2.

 The default username is admin@kubeflow.org, and the default password is 12341234. To
create additional users, follow the instructions in the official Kubeflow documentation.

Example Kubeflow Operations and Tasks

This section includes examples of various operations and tasks that you may want to perform using

Kubeflow.

https://www.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/#add-static-users-for-basic-auth

25 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data scientist

workspaces. To provision a new Jupyter Notebook server with Kubeflow, perform the following tasks. For

more information about Jupyter Notebooks within the Kubeflow context, see the official Kubeflow

documentation.

1. Optional: If there are existing volumes on your NetApp storage system that you want to mount on the
new Jupyter Notebook server, but that are not tied to PersistentVolumeClaims (PVCs) in the
namespace that the new server is going to be created in (see step 4 below), then you must import
these volumes into that namespace. Use the Trident volume import functionality to import these
volumes.

The example commands that follow show the importing of an existing volume named pb_fg_all into

the kubeflow-anonymous namespace. These commands create a PVC in the kubeflow-

anonymous namespace that is tied to the volume on the NetApp storage system. For more

information about PVCs, see the official Kubernetes documentation. For more information about the
volume import functionality, see the Trident documentation. For a detailed example showing the
importing of a volume using Trident, see the section “0.”

 The volume is imported in the kubeflow-anonymous namespace because that is the
namespace that the new Jupyter Notebook server is created in in step 4. To mount this
existing volume on the new Jupyter Notebook server using Kubeflow, a PVC must exist for
the volume in the same namespace.

$ cat << EOF > ./pvc-import-pb_fg_all-kubeflow-anonymous.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all

 namespace: kubeflow-anonymous

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-import-pb_fg_all-

kubeflow-anonymous.yaml -n trident

+--+--------+----------------------------+----------+----

----------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+--+--------+----------------------------+----------+----

----------------------------------+--------+---------+

| pvc-1ed071be-d5a6-11e9-8278-00505681feb6 | 10 TiB | ontap-ai-flexgroups-retain | file |

12f4f8fa-0500-4710-a023-d9b47e86a2ec | online | true |

+--+--------+----------------------------+----------+----

----------------------------------+--------+---------+

$ kubectl get pvc -n kubeflow-anonymous

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

pb-fg-all Bound pvc-1ed071be-d5a6-11e9-8278-00505681feb6 10Ti ROX ontap-

ai-flexgroups-retain 14s

2. From the Kubeflow central dashboard, click Notebook Servers in the main menu to navigate to the
Jupyter Notebook server administration page.

https://www.kubeflow.org/docs/components/jupyter/
https://www.kubeflow.org/docs/components/jupyter/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/

26 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

3. Click New Server to provision a new Jupyter Notebook server.

4. Give your new server a name, choose the Docker image that you want your server to be based on,
and specify the amount of CPU and RAM to be reserved by your server. If the Namespace field is
blank, use the Select Namespace menu in the page header to choose a namespace. The
Namespace field is then auto-populated with the chosen namespace.

In the following example, the kubeflow-anonymous namespace is chosen. In addition, the default

values for Docker image, CPU, and RAM are accepted.

27 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

5. Specify the workspace volume details. If you choose to create a new volume, then that volume or
PVC is provisioned using the default StorageClass. Because a StorageClass utilizing Trident was
designated as the default StorageClass in the section “Set Default Kubernetes StorageClass,” the
volume or PVC is provisioned with Trident. This volume is automatically mounted as the default
workspace within the Jupyter Notebook Server container. Any notebooks that a user creates on the
server that are not saved to a separate data volume are automatically saved to this workspace
volume. Therefore, the notebooks are persistent across reboots.

6. Add data volumes. The following example specifies the existing volume that was imported by the
example commands in step 1 and accepts the default mount point.

28 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

7. Optional: Request that the desired number of GPUs be allocated to your notebook server. In the
following example, one GPU is requested.

8. Click Launch to provision your new notebook server.

9. Wait for your notebook server to be fully provisioned. This can take several minutes if you have never
provisioned a server using the Docker image that you specified in step 4 because the image needs to
be downloaded. When your server has been fully provisioned, you see a green checkmark graphic in
the Status column on the Jupyter Notebook server administration page.

10. Click Connect to connect to your new server’s web interface.

11. Confirm that the dataset volume that was specified in step 6 is mounted on the server. Note that this
volume is mounted within the default workspace by default. From the perspective of the user, this is
just another folder within the workspace. The user, who is likely a data scientist and not an
infrastructure expert, does not need to possess any storage expertise in order to use this volume.

29 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

12. Open a terminal and, assuming that a new volume was requested in step 5, execute df -h to

confirm that a new Trident-provisioned persistent volume is mounted as the default workspace.

 The default workspace directory is the base directory that you are presented with when you
first access the server’s web interface. Therefore, any artifacts that the user creates using the
web interface are stored on this Trident-provisioned persistent volume.

30 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

13. Using the terminal, run nvidia-smi to confirm that the correct number of GPUs were allocated to

the notebook server. In the following example, one GPU has been allocated to the notebook server
as requested in step 7.

31 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Create a Snapshot of an ONTAP Volume from Within a Jupyter Notebook

To trigger the creation of a snapshot, from within a Jupyter Notebook, of a NetApp ONTAP volume that is

mounted in the Jupyter Notebook Server’s workspace, perform the following tasks. This operation takes

advantage of the NetApp ONTAP REST APIs and the NetApp ONTAP Python module. For more

information about the REST APIs and the Python module, see the NetApp support site. Note that tasks in

this section only work for volumes that reside on ONTAP storage systems or software-defined instances.

1. Connect to a Jupyter Notebook server’s web interface. See the section “Provision a Jupyter Notebook
Workspace for Data Scientist or Developer Use" for instructions on how to provision a Jupyter
Notebook Server.

2. Open an existing Python 3 notebook or create a new Python 3 notebook. The following example
shows the creation of a new Python 3 notebook.

3. Add the following content to the Notebook, update variable values as stated in the comments, and
then run all cells. Alternatively, an example Jupyter Notebook containing this content can be
downloaded from NetApp’s Kubeflow and Jupyter Examples GitHub repository.

https://library.netapp.com/ecmdocs/ECMLP2858435/html/index.html
https://github.com/NetApp/kubeflow_jupyter_pipeline

32 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

33 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

34 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

35 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Trigger a Cloud Sync Replication Update from Within a Jupyter Notebook

From directly within a Jupyter Notebook, you can trigger the replication of data to and from a variety of file

and object storage platforms by using NetApp Cloud Sync replication technology. Potential use cases

include:

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AI/ML model training or retraining.

• Replicating a newly trained or newly-updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

• Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the
training of an AI/ML model.

• Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML
training environment for use in the training of an AI/ML model.

• Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage.

• Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance
AI/ML training environment for use in the training of an AI/ML model.

To trigger a Cloud Sync replication update from within a Jupyter Notebook, perform the following tasks:

Note: Before you perform the exercises that are outlined in this section, we assume that you have
already initiated the Cloud Sync relationship that you wish to trigger an update for. To initiate a
relationship, visit cloudsync.netapp.com.

1. Connect to a Jupyter Notebook server’s web interface. For instructions on how to provision a Jupyter
Notebook server, see the section “Provision a Jupyter Notebook Workspace for Data Scientist or
Developer Use.”.

2. Open an existing Python 3 notebook or create a new Python 3 notebook. The following example
shows the creation of a new Python 3 notebook.

http://cloudsync.netapp.com/

36 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

3. Add the following content to the Notebook, update variable values as stated in the instructions, and
then run all cells. Alternatively, an example Jupyter Notebook containing this content can be
downloaded from NetApp’s Kubeflow and Jupyter Examples GitHub repository.

https://github.com/NetApp/kubeflow_jupyter_pipeline

37 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

38 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

39 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

40 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Create a Kubeflow Pipeline to Execute an End-to-End AI Training Workflow with
Built-in Traceability and Versioning

To define and execute a new Kubeflow Pipeline that takes advantage of NetApp Snapshot technology in

order to integrate rapid and efficient dataset and model versioning and traceability into an end-to-end

AI/ML model training workflow, perform the following tasks. For more information about Kubeflow

41 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

pipelines, see the official Kubeflow documentation. Note that the example pipeline that is shown in this

section only works with volumes that reside on ONTAP storage systems or software-defined instances.

1. Create a Kubernetes secret containing the username and password of the cluster admin account for
the ONTAP cluster on which your volumes reside. This secret must be created in the kubeflow

namespace because this is the namespace that pipelines are executed in. Note that you must replace
username and password with your username and password when executing these commands, and

you must use the output of the base64 commands (see highlighted text) in your secret definition
accordingly.

$ echo -n 'username' | base64

dXNlcm5hbWU=

$ echo -n 'password' | base64

cGFzc3dvcmQ=

$ cat << EOF > ./secret-ontap-cluster-mgmt-account.yaml

apiVersion: v1

kind: Secret

metadata:

 name: ontap-cluster-mgmt-account

 namespace: kubeflow

data:

 username: dXNlcm5hbWU=

 password: cGFzc3dvcmQ=

EOF

$ kubectl create -f ./secret-ontap-cluster-mgmt-account.yaml

secret/ontap-cluster-mgmt-account created

2. If the volume containing the data that you plan to use to train your model is not tied to a PVC in the
kubeflow namespace, then you must import this volume into that namespace. Use the Trident

volume import functionality to import this volume. The volume must be imported into the kubeflow

namespace because this is the namespace that pipelines are executed in.

If your dataset volume is already tied to a PVC in the kubeflow namespace, then you can skip this

step. If you do not yet have a dataset volume, then you must provision one and then transfer your
data to it. See the section “Provision a New Volume” for an example showing how to provision a new
volume with Trident.

The example commands that follow show the importing of an existing FlexVol volume, named
dataset_vol, into the kubeflow namespace. For more information about PVCs, see the official

Kubernetes documentation. For more information about the volume import functionality, see the
Trident documentation. For a detailed example showing the importing of a volume using Trident, see
the section “Import an Existing Volume.”

$ cat << EOF > ./pvc-import-dataset-vol-kubeflow.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: dataset-vol

 namespace: kubeflow

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: ontap-ai-flexvols-retain

EOF

$ tridentctl import volume ontap-ai-flexvols dataset_vol -f ./pvc-import-dataset-vol-

kubeflow.yaml -n trident

+--+--------+--------------------------+----------+------

--------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+--+--------+--------------------------+----------+------

--------------------------------+--------+---------+

| pvc-3c70ad14-d88f-11e9-b5e2-00505681f3d9 | 10 TiB | ontap-ai-flexvols-retain | file |

2942d386-afcf-462e-bf89-1d2aa3376a7b | online | true |

+--+--------+--------------------------+----------+------

--------------------------------+--------+---------+

$ kubectl get pvc -n kubeflow

https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/

42 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

imagenet-benchmark-job-gblgq-kfpresults Bound pvc-a4e32212-d65c-11e9-a043-00505681a82d 1Gi

RWX ontap-ai-flexvols-retain 2d19h

katib-mysql Bound pvc-b07f293e-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 10d

dataset-vol Bound pvc-43b12235-f32e-4dc4-a7b8-88e90d935a12

10Ti ROX ontap-ai-flexvols-retain 8s

metadata-mysql Bound pvc-b0f3f032-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 10d

minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 10d

mysql-pv-claim Bound pvc-b2429afd-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 10d

3. If the volume on which you wish to store your trained model is not tied to a PVC in the kubeflow

namespace, then you must import this volume into that namespace. Use the Trident volume import
functionality to import this volume. The volume must be imported into the kubeflow namespace

because this is the namespace that pipelines are executed in.

If your trained model volume is already tied to a PVC in the kubeflow namespace, then you can skip

this step. If you do not yet have a trained model volume, then you must provision one. See the
section “Provision a New Volume” for an example showing how to provision a new volume with
Trident.

The example commands that follow show the importing of an existing FlexVol volume, named
kfp_model_vol, into the kubeflow namespace. For more information about PVCs, see the official

Kubernetes documentation. For more information about the volume import functionality, see the
Trident documentation. For a detailed example showing the importing of a volume using Trident, see
the section “Import an Existing Volume.”

$ cat << EOF > ./pvc-import-dataset-vol-kubeflow.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: kfp-model-vol

 namespace: kubeflow

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: ontap-ai-flexvols-retain

EOF

$ tridentctl import volume ontap-ai-flexvols kfp_model_vol -f ./pvc-import-kfp-model-vol-

kubeflow.yaml -n trident

+--+--------+--------------------------+----------+------

--------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+--+--------+--------------------------+----------+------

--------------------------------+--------+---------+

| pvc-3c70ad14-d88f-11e9-b5e2-00505681f3d9 | 10 TiB | ontap-ai-flexvols-retain | file |

2942d386-afcf-462e-bf89-1d2aa3376a7b | online | true |

+--+--------+--------------------------+----------+------

--------------------------------+--------+---------+

$ kubectl get pvc -n kubeflow

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

imagenet-benchmark-job-gblgq-kfpresults Bound pvc-a4e32212-d65c-11e9-a043-00505681a82d 1Gi

RWX ontap-ai-flexvols-retain 2d19h

katib-mysql Bound pvc-b07f293e-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 10d

kfp-model-vol Bound pvc-236e893b-63b4-40d3-963b-e709b9b2816b

10Ti ROX ontap-ai-flexvols-retain 8s

metadata-mysql Bound pvc-b0f3f032-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 10d

minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 10d

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/

43 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

mysql-pv-claim Bound pvc-b2429afd-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 10d

4. If you have not already done so, you must install the Kubeflow Pipelines SDK. See the official
Kubeflow documentation for installation instructions.

5. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands
that follow show the creation of a pipeline definition script for a pipeline that accepts the following
parameters at run-time and then executes the following steps. Modify the pipeline definition script as
needed depending on your specific process.

Run-time parameters:

− ontap_cluster_mgmt_hostname: The host name or IP address of the ONTAP cluster on

which your dataset and model volumes are stored.

− ontap_cluster_admin_acct_k8s_secret: the name of the Kubernetes secret that was

created in step 1.

− ontap_verify_ssl_cert: Denotes whether to verify your cluster’s SSL certificate when

communicating with the ONTAP API (true/false).

− dataset_volume_pvc_existing: The name of the Kubernetes PersistentVolumeClaim (PVC)

in the kubeflow namespace that is tied to the volume that contains the data that you want to use

to train your model.

− dataset_volume_pv_existing: the name of the Kubernetes PersistentVolume (PV) object

that corresponds to the dataset volume PVC. To get the name of the PV, you can run kubectl

-n kubeflow get pvc. The name of the PV that corresponds to a given PVC can be found in

the VOLUME column.

− trained_model_volume_pvc_existing: The name of the Kubernetes

PersistentVolumeClaim (PVC) in the kubeflow namespace that is tied to the volume on which

you want to store your trained model.

− trained_model_volume_pv_existing: The name of the Kubernetes PersistentVolume (PV)

object that corresponds to the trained model volume PVC. To get the name of the PV, you can
run kubectl -n kubeflow get pvc. The name of the PV that corresponds to a given PVC

can be found in the VOLUME column.

− execute_data_prep_step__yes_or_no: Denotes whether you wish to execute a data prep

step as part of this particular pipeline execution (yes/no).

− data_prep_step_container_image: The container image in which you wish to execute your

data prep step.

− data_prep_step_command: The command that you want to execute as your data prep step.

− data_prep_step_dataset_volume_mountpoint: The mountpoint at which you want to

mount your dataset volume for your data prep step.

− train_step_container_image: The container image in which you wish to execute your

training step.

− train_step_command: The command that you want to execute as your training step.

− train_step_dataset_volume_mountpoint: The mountpoint at which you want to mount

your dataset volume for your training step.

− train_step_model_volume_mountpoint: The mountpoint at which you want to mount your

model volume for your training step.

− validation_step_container_image: The container image in which you wish to execute

your validation step.

− validation_step_command: The command that you want to execute as your validation step.

https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/

44 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

− validation_step_dataset_volume_mountpoint: the mountpoint at which you want to

mount your dataset volume for your validation step.

− validation_step_model_volume_mountpoint: The mountpoint at which you want to

mount your model volume for your validation step.

Pipeline steps:

a. Optional: Execute a data prep step.

b. Trigger the creation of a Snapshot copy, using NetApp Snapshot technology, of your dataset
volume.

 This Snapshot copy is created for traceability purposes. Each time that this pipeline workflow
is executed, a Snapshot copy is created. Therefore, as long as the Snapshot copy is not
deleted, it is always possible to trace a specific training run back to the exact training dataset
that was used for that run.

c. Execute a training step.

d. Trigger the creation of a Snapshot copy, using NetApp Snapshot technology, of your trained
model volume.

 This Snapshot copy is created for versioning purposes. Each time that this pipeline workflow
is executed, a Snapshot copy is created. Therefore, for each individual training run, a read-
only versioned copy of the resulting trained model is automatically saved.

e. Execute a validation step.

$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git

$ cd kubeflow_jupyter_pipeline/Pipelines/

$ vi ai-training-run.py

6. Execute the pipeline definition script that you created in step 5 to create a .yaml manifest for your

pipeline.

$ python3 ai-training-run.py

$ ls ai-training-run.py.yaml

ai-training-run.py.yaml

7. From the Kubeflow central dashboard, click Pipelines in the main menu to navigate to the Kubeflow
Pipelines administration page.

8. Click Upload Pipeline to upload your pipeline definition.

45 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

9. Choose the .yaml manifest for your pipeline that you created in step 6, give your pipeline a name,

and click Upload.

10. You should now see your new pipeline in the list of pipelines on the pipeline administration page.
Click your pipeline’s name to view it.

46 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

11. Review your pipeline to confirm that it looks correct.

47 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

12. Click Create run to run your pipeline.

13. You are now presented with a screen from which you can start a pipeline run. Create a name for the
run, enter a description, choose an experiment to file the run under, and choose whether you want to
initiate a one-off run or schedule a recurring run.

48 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

14. Define parameters for the run, and then click Start. In the following example, the default values are
accepted for most parameters. Details for the volume that was imported into the kubeflow

namespace in step 2 are entered for dataset_volume_pvc_existing and

dataset_volume_pv_existing. Details for the volume that was imported into the kubeflow

namespace in step 3 are entered for trained_model_volume_pvc_existing and

trained_model_volume_pv_existing. Non-AI-related commands are entered for the

data_prep_step_command, train_step_command, and validation_step_command

parameters in order to plainly demonstrate the functionality of the pipeline. Note that you defined the
default values for the parameters within your pipeline definition (see step 5).

49 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

15. You are now presented with a screen listing all runs that fall under the specific experiment. Click the
name of the run that you just started to view it.

50 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

16. At this point, the run is likely still in progress.

17. Confirm that the run completed successfully. When the run is complete, every stage of the pipeline
shows a green check-mark icon.

51 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

18. Click a specific stage, and then click Logs to view output for that stage.

52 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

53 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

54 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Create a Kubeflow Pipeline to Rapidly Clone a Dataset for a Data Scientist
Workspace

Perform the following tasks to define and execute a new Kubeflow Pipeline that takes advantage of

NetApp FlexClone technology to clone a dataset volume rapidly and efficiently and create a data scientist

or developer workspace. For more information about Kubeflow Pipelines, see the official Kubeflow

documentation.

Note: The example Kubeflow Pipeline that is detailed in this section is not compatible with FlexGroup
volumes. At the time of this writing, FlexGroup volumes must be cloned by using ONTAP System
Manager, the ONTAP CLI, or the ONTAP API, and then imported into the Kubernetes cluster. For
details about importing a volume using Trident, see the section “Import an Existing Volume.”

1. If you have not already done so, you must install the Kubeflow Pipelines SDK. For installation
instructions, see the official Kubeflow documentation.

2. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands
that follow show the creation of a pipeline definition script for a pipeline that accepts the following
parameters at run-time and then executes the following steps. Modify the pipeline definition script as
needed depending on your specific process.

https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/

55 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Run-time parameters:

− workspace_name: The name that you want to give to your new workspace.

− dataset_volume_pvc_existing: The name of the Kubernetes PersistentVolumeClaim (PVC)

that corresponds to the dataset volume that you wish to clone.

− dataset_volume_pvc_existing_size: The size of the dataset volume that you wish to

clone; for example, 10Gi, 100Gi, or 2Ti.

− trident_storage_class: The Kubernetes StorageClass that the dataset volume you wish to

clone is associated with.

− jupyter_namespace: The namespace in which you intend to create a Jupyter Notebook

workspace. For details about creating a Jupyter Notebook workspace, see the section “Provision
a Jupyter Notebook Workspace for Data Scientist or Developer Use.” The dataset clone that this
pipeline creates is mountable in the Jupyter Notebook workspace.

 The existing dataset volume PVC that you wish to clone from (the value of the
dataset_volume_pvc_existing parameter) must be in this same namespace.

Pipeline steps:

a. Trigger the creation of a clone, using NetApp FlexClone technology, of your dataset volume.

b. Print instructions for deploying an interactive Jupyter Notebook workspace that has access to the
dataset clone.

$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git

$ cd kubeflow_jupyter_pipeline/Pipelines/

$ vi create-data-scientist-workspace.py

3. Execute the pipeline definition script that you created in step 2 to create a .yaml manifest for your

pipeline.

$ python3 create-data-scientist-workspace.py

$ ls create-data-scientist-workspace.py.yaml

create-data-scientist-workspace.py.yaml

4. From the Kubeflow central dashboard, click Pipelines in the main menu to navigate to the Kubeflow
Pipelines administration page.

5. Click Upload Pipeline to upload your pipeline definition.

56 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

6. Choose the.yaml file containing your pipeline definition that you created in step 3, give your pipeline

a name, and click Upload.

7. You should now see your new pipeline in the list of pipelines on the pipeline administration page.
Click your pipeline’s name to view it.

57 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

8. Review your pipeline to confirm that it looks correct.

9. Click Create run to run your pipeline.

10. You are now presented with a screen from which you can start a pipeline run. Create a name for the
run, enter a description, select an experiment to file the run under, and select whether you want to
initiate a one-off run or schedule a recurring run.

58 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

11. Define parameters for the run, and then click Start. Reference step 2 for details on the individual
parameters.

12. You are now presented with a screen listing all runs that fall under the specific experiment. Click the
name of the run that you just started to view it.

59 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

13. At this point, the run is likely still in progress.

14. Confirm that the run completed successfully. When the run is complete, every stage of the pipeline
shows a green check-mark icon.

60 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

15. Click the dataset-clone-for-workspace stage, and then click Logs to view output for that stage.

61 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

16. Click the print-instructions stage, and then click Logs to view the outputted instructions. See

the section “Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use” for details
on creating a Jupyter Notebook workspace.

Create a Kubeflow Pipeline to Trigger a SnapMirror Volume Replication Update

You can define and execute a new Kubeflow pipeline that takes advantage of NetApp SnapMirror data

replication technology to replicate the contents of a volume between different ONTAP clusters.

This pipeline can be used to replicate data of any type between ONTAP clusters that might or might not

be located at different sites or in different regions. Potential use cases include:

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AI/ML model training or retraining.

• Replicating a newly trained or newly-updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

For more information about Kubeflow pipelines, see the official Kubeflow documentation. Note that the

example pipeline that is shown in this section only works with volumes that reside on ONTAP storage

systems or software-defined instances.

To create a new Kubeflow pipeline to trigger a SnapMirror volume replication update, perform the

following steps:

Note: Before you perform the exercises that are outlined in this section, we assume that you have
already initiated an asynchronous SnapMirror relationship between the source and the
destination volume according to standard configuration instructions. For details, refer to official
NetApp documentation.

1. If you have not already done so, create a Kubernetes secret containing the username and password
of the cluster admin account for the ONTAP cluster on which your destination volume resides

2. This secret must be created in the kubeflow namespace because this is the namespace that

pipelines are executed in. Replace username and password with your username and password

when executing these commands and use the output of the base64 commands (see highlighted text)
in your secret definition accordingly.

$ echo -n 'username' | base64

dXNlcm5hbWU=

$ echo -n 'password' | base64

cGFzc3dvcmQ=

$ cat << EOF > ./secret-ontap-cluster-mgmt-account.yaml

apiVersion: v1

kind: Secret

metadata:

 name: ontap-cluster-mgmt-account

 namespace: kubeflow

data:

 username: dXNlcm5hbWU=

 password: cGFzc3dvcmQ=

EOF

$ kubectl create -f ./secret-ontap-cluster-mgmt-account.yaml

secret/ontap-cluster-mgmt-account created

3. If you have not already done so, install the Kubeflow Pipelines SDK. See the official Kubeflow
documentation for installation instructions.

https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://docs.netapp.com/
http://docs.netapp.com/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/

62 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

4. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands
that follow show the creation of a pipeline definition script for a pipeline that accepts the following
parameters at run-time and then executes the following steps. Modify the pipeline definition script as
needed depending on your specific process.

Pipeline steps:

a. Trigger a replication update for the specified asynchronous SnapMirror relationship.

Run-time parameters:

− ontap_cluster_mgmt_hostname: The host name or IP address of the ONTAP cluster on

which the destination volume resides.

− ontap_cluster_admin_acct_k8s_secret: The name of the Kubernetes secret that was

created in step 1.

− ontap_api_verify_ssl_cert: Denotes whether to verify your cluster’s SSL certificate when

communicating with the ONTAP API (yes/no).

− source_svm: The name of the SVM on which the source volume resides.

− source_volume: The name of the source volume (the volume that you are replicating from) on

the source cluster.

− destination_svm: The name of the SVM on which the destination volume resides.

− destination_volume: The name of the destination volume (the volume that you are replicating

to) on the destination cluster.

$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git

$ cd kubeflow_jupyter_pipeline/Pipelines/

$ vi replicate-data-snapmirror.py

5. Execute the pipeline definition script that you created in step 4 to create a .yaml manifest for your

pipeline.

$ python3 replicate-data-snapmirror.py

$ ls replicate-data-snapmirror.py.yaml

replicate-data-snapmirror.py.yaml

6. Follow steps 7 through 18 from the section “Create a Kubeflow Pipeline to Execute an End-to-End AI
Training Workflow with Built-in Traceability and Versioning.”

Be sure to use the .yaml manifest that was created in the previous step (step 5) of this section

instead of the manifest that was created in the section “Create a Kubeflow Pipeline to Execute an
End-to-End AI Training Workflow with Built-in Traceability and Versioning.”

Create a Kubeflow Pipeline to Trigger a Cloud Sync Replication Update

You can define and execute a new Kubeflow pipeline that takes advantage of NetApp Cloud Sync

replication technology to replicate data to and from a variety of file and object storage platforms. Potential

use cases include:

• Replicating newly-acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AI/ML model training or retraining.

• Replicating a newly-trained or newly-updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

• Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the
training of an AI/ML model.

• Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML
training environment for use in the training of an AI/ML model.

• Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage.

63 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

• Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance
AI/ML training environment for use in the training of an AI/ML model.

For more information about Kubeflow pipelines, see the official Kubeflow documentation.

Note: The example pipeline that is shown in this section only works with volumes that reside on ONTAP
storage systems or software-defined instances.

To create a new Kubeflow pipeline to trigger a Cloud Sync replication update, perform the following steps:

Note: Before you perform the exercises that are outlined in this section, we assume that you have
already initiated the Cloud Sync relationship that you wish to trigger an update for. To initiate a
relationship, visit cloudsync.netapp.com.

1. If you do not yet have a Cloud Sync API refresh token, access the following URL using your web
browser to create one: https://services.cloud.netapp.com/refresh-token.

2. If you have not already done so, create a Kubernetes secret containing your Cloud Sync API refresh
token. This secret must be created in the kubeflow namespace because this is the namespace that

pipelines are executed in. Replace <your refresh token> with your refresh token when

executing these commands and use the output of the base64 command (see highlighted text) in your
secret definition accordingly.

$ echo -n '<your refresh token>' | base64

PHlvdXIgcmVmcmVzaCB0b2tlbj4=

$ cat << EOF > ./secret-cloud-sync-refresh-token.yaml

apiVersion: v1

kind: Secret

metadata:

 name: cloud-sync-refresh-token

 namespace: kubeflow

data:

 refreshToken: PHlvdXIgcmVmcmVzaCB0b2tlbj4=

EOF

$ kubectl create -f ./secret-cloud-sync-refresh-token.yaml

secret/ secret-cloud-sync-refresh-token created

3. If you have not already done so, install the Kubeflow Pipelines SDK. For installation instructions, see
the official Kubeflow documentation.

4. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands
that follow show the creation of a pipeline definition script for a pipeline that accepts the following
parameters at run-time and then executes the following steps. Modify the pipeline definition script as
needed depending on your specific process.

Pipeline steps:

a. Trigger a replication update for the specified Cloud Sync relationship.

Run-time parameters:

− cloud_sync_relationship_id: The relationship ID of the Cloud Sync relationship for which

you want to trigger an update. If you do not know the relationship ID, you can retrieve it by using
the Jupyter Notebook that is included in the section “Trigger a Cloud Sync Replication Update
from Within a Jupyter Notebook” or by directly calling the Relationships-v2 API.

− cloud_sync_refresh_token_k8s_secret: The name of the Kubernetes secret that was

created in step 2.

$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git

$ cd kubeflow_jupyter_pipeline/Pipelines/

$ vi replicate-data-cloud-sync.py

5. Execute the pipeline definition script that you created in step 4 to create a .yaml manifest for your

pipeline

$ python3 replicate-data-cloud-sync.py

$ ls replicate-data-cloud-sync.py.yaml

https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://cloudsync.netapp.com/
https://services.cloud.netapp.com/refresh-token
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
https://cloudsync.netapp.com/docs/

64 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

replicate-data-cloud-sync.py.yaml

6. Follow steps 7 through 18 from the section “Create a Kubeflow Pipeline to Execute an End-to-End AI
Training Workflow with Built-in Traceability and Versioning.”

Be sure to use the .yaml manifest that was created in the previous step (step 5) of this section

instead of the manifest that was created in the section “Create a Kubeflow Pipeline to Execute an
End-to-End AI Training Workflow with Built-in Traceability and Versioning.”

Apache Airflow Deployment

NetApp recommends running Apache Airflow on top of Kubernetes. This section describes the tasks that

you must complete to deploy Airflow in your Kubernetes cluster.

Note: It is possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on platforms
other than Kubernetes is outside of the scope of this document.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have

already performed the following tasks:

1. You already have a working Kubernetes cluster.

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in
the section “NetApp Trident Deployment and Configuration.”

Install Helm

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow,

you must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow

the installation instructions in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster.

The Airflow deployment process attempts to provision new persistent volumes using the default

StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment fails.

To designate a default StorageClass within your cluster, follow the instructions outlined in the section “Set

Default Kubernetes StorageClass.” If you have already designated a default StorageClass within your

cluster, then you can skip this step.

Use Helm to Deploy Airflow

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment

jump host:

1. Deploy Airflow using Helm by following the deployment instructions for the official Airflow chart on the
Helm Hub. The example commands that follow show the deployment of Airflow using Helm. Modify,
add, and/or remove values in the custom-values.yaml file as needed depending on your

environment and desired configuration.

$ cat << EOF > custom-values.yaml

###################################

Airflow - Common Configs

###################################

airflow:

 ## the airflow executor type to use

 ##

 executor: "KubernetesExecutor"

https://helm.sh/docs/intro/install/
https://hub.helm.sh/charts/stable/airflow

65 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 ## environment variables for the web/scheduler/worker Pods (for airflow configs)

 ##

 config:

 AIRFLOW__KUBERNETES__DELETE_WORKER_PODS: "False"

 AIRFLOW__KUBERNETES__GIT_REPO: "git@github.com:mboglesby/airflow-dev.git"

 AIRFLOW__KUBERNETES__GIT_BRANCH: master

 AIRFLOW__KUBERNETES__GIT_DAGS_FOLDER_MOUNT_POINT: "/opt/airflow/dags"

 AIRFLOW__KUBERNETES__DAGS_VOLUME_SUBPATH: "repo/"

 AIRFLOW__KUBERNETES__GIT_SSH_KEY_SECRET_NAME: "airflow-git-key"

 AIRFLOW__KUBERNETES__WORKER_CONTAINER_REPOSITORY: "apache/airflow"

 AIRFLOW__KUBERNETES__WORKER_CONTAINER_TAG: "1.10.12"

 AIRFLOW__KUBERNETES__RUN_AS_USER: "50000"

 AIRFLOW__KUBERNETES__LOGS_VOLUME_CLAIM: "airflow-k8s-exec-logs"

workers:

 enabled: false # Celery workers

###################################

Airflow - WebUI Configs

###################################

web:

 ## configs for the Service of the web Pods

 ##

 service:

 type: NodePort

###################################

Airflow - Logs Configs

###################################

logs:

 persistence:

 enabled: true

###################################

Airflow - DAGs Configs

###################################

dags:

 ## configs for the DAG git repository & sync container

 ##

 git:

 ## url of the git repository

 ##

 url: "git@github.com:mboglesby/airflow-dev.git"

 ## the branch/tag/sha1 which we clone

 ##

 ref: master

 ## the name of a pre-created secret containing files for ~/.ssh/

 ##

 ## NOTE:

 ## - this is ONLY RELEVANT for SSH git repos

 ## - the secret commonly includes files: id_rsa, id_rsa.pub, known_hosts

 ## - known_hosts is NOT NEEDED if `git.sshKeyscan` is true

 ##

 secret: "airflow-git-key-files"

 sshKeyscan: true

 ## the name of the private key file in your `git.secret`

 ##

 ## NOTE:

 ## - this is ONLY RELEVANT for PRIVATE SSH git repos

 ##

 privateKeyName: id_rsa

 ## the host name of the git repo

 ##

 ## NOTE:

 ## - this is ONLY REQUIRED for SSH git repos

 ##

 ## EXAMPLE:

66 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 ## repoHost: "github.com"

 ##

 repoHost: "github.com"

 ## the port of the git repo

 ##

 ## NOTE:

 ## - this is ONLY REQUIRED for SSH git repos

 ##

 repoPort: 22

 ## configs for the git-sync container

 ##

 gitSync:

 ## enable the git-sync sidecar container

 ##

 enabled: true

 ## the git sync interval in seconds

 ##

 refreshTime: 60

EOF

$ helm install "airflow" stable/airflow --version "7.10.1" --namespace "airflow" --values

./custom-values.yaml

NAME: airflow

LAST DEPLOYED: Mon Oct 5 18:32:11 2020

NAMESPACE: airflow

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES:

Congratulations. You have just deployed Apache Airflow!

1. Get the Airflow Service URL by running these commands:

 export NODE_PORT=$(kubectl get --namespace airflow -o jsonpath="{.spec.ports[0].nodePort}"

services airflow-web)

 export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

 echo http://$NODE_IP:$NODE_PORT/

2. Open Airflow in your web browser

2. Confirm that all Airflow pods are up and running.

$ kubectl -n airflow get pod

NAME READY STATUS RESTARTS AGE

airflow-postgresql-0 1/1 Running 0 38m

airflow-redis-master-0 1/1 Running 0 38m

airflow-scheduler-7fb4bf56cc-g88z4 2/2 Running 2 38m

airflow-web-8f4bdf5fb-hhxr7 2/2 Running 1 38m

airflow-worker-0 2/2 Running 0 38m

3. Obtain the Airflow web service URL by following the instructions that were printed to the console
when you deployed Airflow using Helm in step 1.

$ export NODE_PORT=$(kubectl get --namespace airflow -o jsonpath="{.spec.ports[0].nodePort}"

services airflow-web)

$ export NODE_IP=$(kubectl get nodes --namespace airflow -o

jsonpath="{.items[0].status.addresses[0].address}")

$ echo http://$NODE_IP:$NODE_PORT/

http://10.61.188.112:30366/

4. Confirm that you can access the Airflow web service.

http://10.61.188.112:30366/

67 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Example Apache Airflow Workflows

This section includes example Apache Airflow DAGs that highlight various NetApp data management

capabilities and demonstrate how they can be implemented as part of an Airflow workflow. For more

information on DAGs and for detailed instructions regarding how to define and execute them, refer to the

official Airflow documentation.

Implement an End-to-End AI Training Workflow with Built-in Traceability and
Versioning

The example DAG outlined in this section implements a workflow that takes advantage of NetApp

Snapshot technology to integrate rapid and efficient dataset and model versioning and traceability into an

end-to-end AI/ML model training workflow.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites:

1. You must have created a connection in Airflow for your ONTAP system.

https://airflow.apache.org/docs/stable/

68 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI.
The example screenshot that follows shows the creation of a connection for a specific ONTAP
system. The following values are required:

− Conn ID. Unique name for the connection.

− Host. The host name or IP address of the ONTAP cluster on which your dataset and model
volumes are stored.

− Login. Username of the cluster admin account for the ONTAP cluster on which your volumes
reside.

− Password. Password of the cluster admin account for the ONTAP cluster on which your volumes
reside.

2. There must be an existing PersistentVolumeClaim (PVC) in the airflow namespace that is tied to

the volume that contains the data that you want to use to train your model.

3. There must be an existing PersistentVolumeClaim (PVC) in the airflow namespace that is tied to

the volume on which you want to store your trained model.

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS

section to match your environment.

69 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Airflow DAG Definition: AI Training Run

Steps:

1. Data prep job

2. Dataset snapshot (for traceability)

3. Training job

4. Model snapshot (for versioning/baselining)

5. Inference validation job

from airflow.utils.dates import days_ago

from airflow.secrets import get_connections

from airflow.models import DAG

from airflow.operators.python_operator import PythonOperator

from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator

from airflow.contrib.kubernetes.pod import Resources

from airflow.contrib.kubernetes.volume import Volume

from airflow.contrib.kubernetes.volume_mount import VolumeMount

DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####

Define default args for DAG

ai_training_run_dag_default_args = {

 'owner': 'NetApp'

}

Define DAG details

ai_training_run_dag = DAG(

 dag_id='ai_training_run',

 default_args=ai_training_run_dag_default_args,

 schedule_interval=None,

 start_date=days_ago(2),

 tags=['training']

)

Define volume details (change values as necessary to match your environment)

ONTAP system details

airflowConnectionName = 'ontap_ai' # Name of the Airflow connection that contains connection

details for your ONTAP system's cluster admin account

verifySSLCert = False # Denotes whether or not to verify the SSL cert when calling the ONTAP

API

Dataset volume

dataset_volume_mount = VolumeMount(

 'dataset-volume',

 mount_path='/mnt/dataset',

 sub_path=None,

 read_only=False

)

dataset_volume_config= {

 'persistentVolumeClaim': {

 'claimName': 'dataset-vol'

 }

}

dataset_volume = Volume(name='dataset-volume', configs=dataset_volume_config)

dataset_volume_pv_name = 'pvc-79e0855a-30a1-4f63-b34c-1029b1df49f6'

Model volume

model_volume_mount = VolumeMount(

 'model-volume',

 mount_path='/mnt/model',

 sub_path=None,

 read_only=False

)

model_volume_config= {

 'persistentVolumeClaim': {

 'claimName': 'airflow-model-vol'

 }

}

70 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

model_volume = Volume(name='model-volume', configs=model_volume_config)

model_volume_pv_name = 'pvc-b3e7cb62-2694-45a3-a56d-9fad6b1262e4'

Define job details (change values as needed)

Data prep step

data_prep_step_container_image = "ubuntu:bionic"

data_prep_step_command = ["echo", "'No data prep command entered'"] # Replace this echo command

with the data prep command that you wish to execute

data_prep_step_resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to:

{'limit_gpu': 1}

Training step

train_step_container_image = "nvcr.io/nvidia/tensorflow:20.07-tf1-py3"

train_step_command = ["echo", "'No training command entered'"] # Replace this echo command with

the training command that you wish to execute

train_step_resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to:

{'limit_gpu': 1}

Inference validation step

validate_step_container_image = "nvcr.io/nvidia/tensorflow:20.07-tf1-py3"

validate_step_command = ["echo", "'No inference validation command entered'"] # Replace this echo

command with the inference validation command that you wish to execute

validate_step_resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to:

{'limit_gpu': 1}

Define function that triggers the creation of a NetApp snapshot

def netappSnapshot(**kwargs) -> str :

 # Parse args

 for key, value in kwargs.items() :

 if key == 'pvName' :

 pvName = value

 elif key == 'verifySSLCert' :

 verifySSLCert = value

 elif key == 'airflowConnectionName' :

 airflowConnectionName = value

 # Install netapp_ontap package

 import sys, subprocess

 result = subprocess.check_output([sys.executable, '-m', 'pip', 'install', '--user', 'netapp-

ontap'])

 print(str(result).replace('\\n', '\n'))

 # Import needed functions/classes

 from netapp_ontap import config as netappConfig

 from netapp_ontap.host_connection import HostConnection as NetAppHostConnection

 from netapp_ontap.resources import Volume, Snapshot

 from datetime import datetime

 import json

 # Retrieve ONTAP cluster admin account details from Airflow connection

 connections = get_connections(conn_id = airflowConnectionName)

 ontapConnection = connections[0] # Assumes that you only have one connection with the

specified conn_id configured in Airflow

 ontapClusterAdminUsername = ontapConnection.login

 ontapClusterAdminPassword = ontapConnection.password

 ontapClusterMgmtHostname = ontapConnection.host

 # Configure connection to ONTAP cluster/instance

 netappConfig.CONNECTION = NetAppHostConnection(

 host = ontapClusterMgmtHostname,

 username = ontapClusterAdminUsername,

 password = ontapClusterAdminPassword,

 verify = verifySSLCert

)

 # Convert pv name to ONTAP volume name

 # The following will not work if you specified a custom storagePrefix when creating your

71 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 # Trident backend. If you specified a custom storagePrefix, you will need to update this

 # code to match your prefix.

 volumeName = 'trident_%s' % pvName.replace("-", "_")

 print('\npv name: ', pvName)

 print('ONTAP volume name: ', volumeName)

 # Create snapshot; print API response

 volume = Volume.find(name = volumeName)

 timestamp = datetime.today().strftime("%Y%m%d_%H%M%S")

 snapshot = Snapshot.from_dict({

 'name': 'airflow_%s' % timestamp,

 'comment': 'Snapshot created by a Apache Airflow DAG',

 'volume': volume.to_dict()

 })

 response = snapshot.post()

 print("\nAPI Response:")

 print(response.http_response.text)

 # Retrieve snapshot details

 snapshot.get()

 # Convert snapshot details to JSON string and print

 snapshotDetails = snapshot.to_dict()

 print("\nSnapshot Details:")

 print(json.dumps(snapshotDetails, indent=2))

 # Return name of newly created snapshot

 return snapshotDetails['name']

Define DAG steps/workflow

with ai_training_run_dag as dag :

 # Define data prep step using Kubernetes Pod operator

(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator)

 data_prep = KubernetesPodOperator(

 namespace='airflow',

 image=data_prep_step_container_image,

 cmds=data_prep_step_command,

 resources = data_prep_step_resources,

 volumes=[dataset_volume, model_volume],

 volume_mounts=[dataset_volume_mount, model_volume_mount],

 name="ai-training-run-data-prep",

 task_id="data-prep",

 is_delete_operator_pod=True,

 hostnetwork=False

)

 # Define step to take a snapshot of the dataset volume for traceability

 dataset_snapshot = PythonOperator(

 task_id='dataset-snapshot',

 python_callable=netappSnapshot,

 op_kwargs={

 'airflowConnectionName': airflowConnectionName,

 'pvName': dataset_volume_pv_name,

 'verifySSLCert': verifySSLCert

 },

 dag=dag

)

 # State that the dataset snapshot should be created after the data prep job completes

 data_prep >> dataset_snapshot

 # Define training step using Kubernetes Pod operator

(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator)

 train = KubernetesPodOperator(

 namespace='airflow',

 image=train_step_container_image,

 cmds=train_step_command,

 resources = train_step_resources,

 volumes=[dataset_volume, model_volume],

72 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 volume_mounts=[dataset_volume_mount, model_volume_mount],

 name="ai-training-run-train",

 task_id="train",

 is_delete_operator_pod=True,

 hostnetwork=False

)

 # State that training job should be executed after dataset volume snapshot is taken

 dataset_snapshot >> train

 # Define step to take a snapshot of the model volume for versioning/baselining

 model_snapshot = PythonOperator(

 task_id='model-snapshot',

 python_callable=netappSnapshot,

 op_kwargs={

 'airflowConnectionName': airflowConnectionName,

 'pvName': model_volume_pv_name,

 'verifySSLCert': verifySSLCert

 },

 dag=dag

)

 # State that the model snapshot should be created after the training job completes

 train >> model_snapshot

 # Define inference validation step using Kubernetes Pod operator

(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator)

 validate = KubernetesPodOperator(

 namespace='airflow',

 image=validate_step_container_image,

 cmds=validate_step_command,

 resources = validate_step_resources,

 volumes=[dataset_volume, model_volume],

 volume_mounts=[dataset_volume_mount, model_volume_mount],

 name="ai-training-run-validate",

 task_id="validate",

 is_delete_operator_pod=True,

 hostnetwork=False

)

 # State that inference validation job should be executed after model volume snapshot is taken

 model_snapshot >> validate

Rapidly Clone a Dataset to create a Data Scientist Workspace

The example DAG outlined in this section implements a workflow that takes advantage of NetApp

FlexClone technology to clone a dataset volume rapidly and efficiently and create a data scientist or

developer workspace.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites:

1. You must have created a connection in Airflow for your ONTAP system as outlined in Prerequisite #1
in the section “Implement an End-to-End AI Training Workflow with Built-in Traceability and
Versioning.”

2. You must have created a connection in Airflow for a host that is accessible via SSH and on which
tridentctl, the NetApp Trident management utility, is installed and configured to point to your

Kubernetes cluster.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI.
The example screenshot that follows shows the creation of a connection for a specific host on which
tridentctl is installed and configured. The following values are required:

− Conn ID. Unique name for the connection.

− Conn Type. Must be set to ‘SSH’.

73 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

− Host. The host name or IP address of the host.

− Login. Username to use when accessing the host via SSH.

− Password. Password to use when accessing the host via SSH.

3. There must be an existing PersistentVolumeClaim (PVC) within your Kubernetes cluster that is tied to
the volume that contains the dataset that you wish to clone.

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS

section to match your environment.

Airflow DAG Definition: Create Data Scientist Workspace

Steps:

1. Clone source volume

2. Import clone into Kubernetes using Trident

from airflow.utils.dates import days_ago

from airflow.secrets import get_connections

from airflow.models import DAG

from airflow.operators.python_operator import PythonOperator

from airflow.contrib.operators.ssh_operator import SSHOperator

74 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

from datetime import datetime

DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####

Define default args for DAG

create_data_scientist_workspace_dag_default_args = {

 'owner': 'NetApp'

}

Define DAG details

create_data_scientist_workspace_dag = DAG(

 dag_id='create_data_scientist_workspace',

 default_args=create_data_scientist_workspace_dag_default_args,

 schedule_interval=None,

 start_date=days_ago(2),

 tags=['dev-workspace']

)

Define volume details (change values as necessary to match your environment)

ONTAP system details

ontapAirflowConnectionName = 'ontap_ai' # Name of the Airflow connection that contains

connection details for your ONTAP system's cluster admin account

verifySSLCert = False # Denotes whether or not to verify the SSL cert when calling the ONTAP

API

Source volume details

sourcePvName = 'pvc-79e0855a-30a1-4f63-b34c-1029b1df49f6' # Name of Kubernetes PV corresponding

to source volume

Clone volume details (details for the new clone that you will be creating)

timestampForVolumeName = datetime.today().strftime("%Y%m%d_%H%M%S")

cloneVolumeName = 'airflow_clone_%s' % timestampForVolumeName

clonePvcNamespace = 'airflow' # Kubernetes namespace that you want the new clone volume to be

imported into

Define tridentctl jumphost details (change values as necessary to match your environment)

tridentctlAirflowConnectionName = 'tridentctl_jumphost' # Name of the Airflow connection of type

'ssh' that contains connection details for a jumphost on which tridentctl is installed

Define Trident details

tridentStorageClass = 'ontap-flexvol' # Kubernetes StorageClass that you want to use when

importing the new clone volume

tridentNamespace = 'trident' # Namespace that Trident is installed in

tridentBackend = 'ontap-flexvol' # Trident backend that you want to use when importing the new

clone volume

Define function that clones a NetApp volume

def netappClone(task_instance, **kwargs) -> str :

 # Parse args

 for key, value in kwargs.items() :

 if key == 'sourcePvName' :

 sourcePvName = value

 elif key == 'verifySSLCert' :

 verifySSLCert = value

 elif key == 'airflowConnectionName' :

 airflowConnectionName = value

 elif key == 'cloneVolumeName' :

 cloneVolumeName = value

 # Install netapp_ontap package

 import sys, subprocess

 result = subprocess.check_output([sys.executable, '-m', 'pip', 'install', '--user', 'netapp-

ontap'])

 print(str(result).replace('\\n', '\n'))

 # Import needed functions/classes

75 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 from netapp_ontap import config as netappConfig

 from netapp_ontap.host_connection import HostConnection as NetAppHostConnection

 from netapp_ontap.resources import Volume, Snapshot

 from datetime import datetime

 import json

 # Retrieve ONTAP cluster admin account details from Airflow connection

 connections = get_connections(conn_id = airflowConnectionName)

 ontapConnection = connections[0] # Assumes that you only have one connection with the

specified conn_id configured in Airflow

 ontapClusterAdminUsername = ontapConnection.login

 ontapClusterAdminPassword = ontapConnection.password

 ontapClusterMgmtHostname = ontapConnection.host

 # Configure connection to ONTAP cluster/instance

 netappConfig.CONNECTION = NetAppHostConnection(

 host = ontapClusterMgmtHostname,

 username = ontapClusterAdminUsername,

 password = ontapClusterAdminPassword,

 verify = verifySSLCert

)

 # Convert pv name to ONTAP volume name

 # The following will not work if you specified a custom storagePrefix when creating your

 # Trident backend. If you specified a custom storagePrefix, you will need to update this

 # code to match your prefix.

 sourceVolumeName = 'trident_%s' % sourcePvName.replace("-", "_")

 print('\nSource pv name: ', sourcePvName)

 print('Source ONTAP volume name: ', sourceVolumeName)

 # Create clone

 sourceVolume = Volume.find(name = sourceVolumeName)

 cloneVolume = Volume.from_dict({

 'name': cloneVolumeName,

 'svm': sourceVolume.to_dict()['svm'],

 'clone': {

 'is_flexclone':'true',

 'parent_volume': sourceVolume.to_dict()

 },

 'nas': {

 'path': '/%s' % cloneVolumeName

 }

 })

 response = cloneVolume.post()

 print("\nAPI Response:")

 print(response.http_response.text)

 # Retrieve clone volume details

 cloneVolume.get()

 # Convert clone volume details to JSON string

 cloneVolumeDetails = cloneVolume.to_dict()

 print("\nClone Volume Details:")

 print(json.dumps(cloneVolumeDetails, indent=2))

 # Create PVC name that resembles volume name and push as XCom for future use

 task_instance.xcom_push(key = 'clone_pvc_name', value =

cloneVolumeDetails['name'].replace('_', '-'))

 # Return name of new clone volume

 return cloneVolumeDetails['name']

Define DAG steps/workflow

with create_data_scientist_workspace_dag as dag :

 # Define step to clone source volume

 clone_source = PythonOperator(

 task_id='clone-source',

 provide_context=True,

 python_callable=netappClone,

76 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 op_kwargs={

 'airflowConnectionName': ontapAirflowConnectionName,

 'sourcePvName': sourcePvName,

 'verifySSLCert': verifySSLCert,

 'cloneVolumeName': cloneVolumeName

 },

 dag=dag

)

 # Define step to import clone into Kubernetes using Trident

 cloneVolumeName = "{{ task_instance.xcom_pull(task_ids='clone-source', key='return_value')

}}"

 clonePvcName = "{{ task_instance.xcom_pull(task_ids='clone-source', key='clone_pvc_name') }}"

 import_command = '''cat << EOD > import-pvc-%s.yaml && tridentctl -n %s import volume %s %s -

f ./import-pvc-%s.yaml && rm -f import-pvc-%s.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: %s

 namespace: %s

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: %s

EOD''' % (clonePvcName, tridentNamespace, tridentBackend, cloneVolumeName, clonePvcName,

clonePvcName, clonePvcName, clonePvcNamespace, tridentStorageClass)

 import_clone = SSHOperator(

 task_id="import-clone",

 command=import_command,

 ssh_conn_id=tridentctlAirflowConnectionName

)

 # State that the import step should be executed after the initial clone step completes

 clone_source >> import_clone

Trigger a SnapMirror Volume Replication Update

The example DAG outlined in this section implements a workflow that takes advantage of NetApp

SnapMirror data replication technology to replicate the contents of a volume between different ONTAP

clusters.

This pipeline can be used to replicate data of any type between ONTAP clusters that might or might not

be located at different sites or in different regions. Potential use cases include the following:

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AI/ML model training or retraining.

• Replicating a newly trained or newly updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites.

• You must have created a connection in Airflow for your ONTAP system as outlined in Prerequisite #1
in the section “Implement an End-to-End AI Training Workflow with Built-in Traceability and
Versioning.”

• You must have already initiated an asynchronous SnapMirror relationship between the source and
the destination volume according to standard configuration instructions. For details, refer to official
NetApp documentation.

http://docs.netapp.com/
http://docs.netapp.com/

77 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS

section to match your environment.

Airflow DAG Definition: Replicate Data - SnapMirror

Steps:

1. Trigger NetApp SnapMirror update

from airflow.utils.dates import days_ago

from airflow.secrets import get_connections

from airflow.models import DAG

from airflow.operators.python_operator import PythonOperator

DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####

Define default args for DAG

replicate_data_snapmirror_dag_default_args = {

 'owner': 'NetApp'

}

Define DAG details

replicate_data_snapmirror_dag = DAG(

 dag_id='replicate_data_snapmirror',

 default_args=replicate_data_snapmirror_dag_default_args,

 schedule_interval=None,

 start_date=days_ago(2),

 tags=['data-movement']

)

Define SnapMirror details (change values as necessary to match your environment)

Destination ONTAP system details

airflowConnectionName = 'ontap_ai' # Name of the Airflow connection that contains connection

details for the destination ONTAP system's cluster admin account

verifySSLCert = False # Denotes whether or not to verify the SSL cert when calling the ONTAP

API

SnapMirror relationship details (existing SnapMirroer relationship for which you want to

trigger an update)

sourceSvm = "ailab"

sourceVolume = "sm"

destinationSvm = "ai221_data"

destinationVolume = "sm_dest"

Define function that triggers a NetApp SnapMirror update

def netappSnapMirrorUpdate(**kwargs) -> int :

 # Parse args

 for key, value in kwargs.items() :

 if key == 'sourceSvm' :

 sourceSvm = value

 elif key == 'sourceVolume' :

 sourceVolume = value

 elif key == 'destinationSvm' :

 destinationSvm = value

 elif key == 'destinationVolume' :

 destinationVolume = value

 elif key == 'verifySSLCert' :

 verifySSLCert = value

 elif key == 'airflowConnectionName' :

 airflowConnectionName = value

 # Install ansible package

78 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 import sys, subprocess, os

 print("Installing required Python modules:\n")

 result = subprocess.check_output([sys.executable, '-m', 'pip', 'install', '--user',

'ansible', 'netapp-lib'])

 print(str(result).replace('\\n', '\n'))

 # Retrieve ONTAP cluster admin account details from Airflow connection

 connections = get_connections(conn_id = airflowConnectionName)

 ontapConnection = connections[0] # Assumes that you only have one connection with the

specified conn_id configured in Airflow

 ontapClusterAdminUsername = ontapConnection.login

 ontapClusterAdminPassword = ontapConnection.password

 ontapClusterMgmtHostname = ontapConnection.host

 # Define temporary Ansible playbook for triggering SnapMirror update

 snapMirrorPlaybookContent = """

- name: "Trigger SnapMirror Update"

 hosts: localhost

 tasks:

 - name: update snapmirror

 na_ontap_snapmirror:

 state: present

 source_path: '%s:%s'

 destination_path: '%s:%s'

 hostname: '%s'

 username: '%s'

 password: '%s'

 https: 'yes'

 validate_certs: '%s'""" % (sourceSvm, sourceVolume, destinationSvm, destinationVolume,

ontapClusterMgmtHostname,

 ontapClusterAdminUsername, ontapClusterAdminPassword, str(verifySSLCert))

 print("Creating temporary Ansible playbook.\n")

 snapMirrorPlaybookFilepath = "/home/airflow/snapmirror-update.yaml"

 snapMirrorPlaybookFile = open(snapMirrorPlaybookFilepath, "w")

 snapMirrorPlaybookFile.write(snapMirrorPlaybookContent)

 snapMirrorPlaybookFile.close()

 # Trigger SnapMirror update

 print("Executing Ansible playbook to trigger SnapMirror update:\n")

 try :

 result = subprocess.check_output(['ansible-playbook', snapMirrorPlaybookFilepath])

 print(str(result).replace('\\n', '\n'))

 except Exception as e :

 print("Exception:", str(e).strip())

 print("Removing temporary Ansible playbook.")

 os.remove(snapMirrorPlaybookFilepath) # Remove temporary Ansible playbook before exiting

 raise

 # Remove temporary Ansible playbook before exiting

 print("Removing temporary Ansible playbook.\n")

 os.remove(snapMirrorPlaybookFilepath)

 # Return success code

 return 0

Define DAG steps/workflow

with replicate_data_snapmirror_dag as dag :

 # Define step to trigger a NetApp SnapMirror update

 trigger_snapmirror = PythonOperator(

 task_id='trigger-snapmirror',

 python_callable=netappSnapMirrorUpdate,

 op_kwargs={

 'airflowConnectionName': airflowConnectionName,

 'verifySSLCert': verifySSLCert,

 'sourceSvm': sourceSvm,

 'sourceVolume': sourceVolume,

 'destinationSvm': destinationSvm,

 'destinationVolume': destinationVolume

79 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 },

 dag=dag

)

Trigger a Cloud Sync Replication Update

The example DAG outlined in this section implements a workflow that takes advantage of NetApp Cloud

Sync replication technology to replicate data to and from a variety of file and object storage platforms.

Potential use cases include the following:

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AI/ML model training or retraining.

• Replicating a newly trained or newly updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

• Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the
training of an AI/ML model.

• Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML
training environment for use in the training of an AI/ML model.

• Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage.

• Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance
AI/ML training environment for use in the training of an AI/ML model.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites.

1. You must have created a connection in Airflow for the NetApp Cloud Sync API.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI.
The example screenshot that follows shows the creation of a connection for the Cloud Sync API. The
following values are required:

− Conn ID. Unique name for the connection.

− Password. Your Cloud Sync API refresh token.

80 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

2. You must have already initiated the Cloud Sync relationship that you wish to trigger an update for. To
initiate a relationship, visit cloudsync.netapp.com.

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS

section to match your environment.

Airflow DAG Definition: Replicate Data - Cloud Sync

Steps:

1. Trigger NetApp Cloud Sync update

from airflow.utils.dates import days_ago

from airflow.secrets import get_connections

from airflow.models import DAG

from airflow.operators.python_operator import PythonOperator

DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####

Define default args for DAG

replicate_data_cloud_sync_dag_default_args = {

 'owner': 'NetApp'

http://cloudsync.netapp.com/

81 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

}

Define DAG details

replicate_data_cloud_sync_dag = DAG(

 dag_id='replicate_data_cloud_sync',

 default_args=replicate_data_cloud_sync_dag_default_args,

 schedule_interval=None,

 start_date=days_ago(2),

 tags=['data-movement']

)

Define Cloud Sync details (change values as necessary to match your environment)

Cloud Sync refresh token details

airflowConnectionName = 'cloud_sync' # Name of the Airflow connection that contains your Cloud

Sync refresh token

Cloud Sync relationship details (existing Cloud Sync relationship for which you want to trigger

an update)

relationshipId = '5ed00996ca85650009a83db2'

Function for triggering an update for a specific Cloud Sync relationship

def netappCloudSyncUpdate(**kwargs) :

 # Parse args

 printResponse = False # Default value

 keepCheckingUntilComplete = True # Default value

 for key, value in kwargs.items() :

 if key == 'relationshipId' :

 relationshipId = value

 elif key == 'printResponse' :

 printResponse = value

 elif key == 'keepCheckingUntilComplete' :

 keepCheckingUntilComplete = value

 elif key == 'airflowConnectionName' :

 airflowConnectionName = value

 # Install requests module

 import sys, subprocess

 subprocess.run([sys.executable, '-m', 'pip', 'install', 'requests'])

 # Import needed modules

 import requests, json, time

 ## API response error class; objects of this class will be raised when an API resposne is not

as expected

 class APIResponseError(Exception) :

 '''Error that will be raised when an API response is not as expected'''

 pass

 ## Generic function for printing an API response

 def printAPIResponse(response: requests.Response) :

 print("API Response:")

 print("Status Code: ", response.status_code)

 print("Header: ", response.headers)

 if response.text :

 print("Body: ", response.text)

 ## Function for obtaining access token and account ID for calling Cloud Sync API

 def netappCloudSyncAuth(refreshToken: str) :

 ## Step 1: Obtain limited time access token using refresh token

 # Define parameters for API call

 url = "https://netapp-cloud-account.auth0.com/oauth/token"

 headers = {

 "Content-Type": "application/json"

82 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 }

 data = {

 "grant_type": "refresh_token",

 "refresh_token": refreshToken,

 "client_id": "Mu0V1ywgYteI6w1MbD15fKfVIUrNXGWC"

 }

 # Call API to optain access token

 response = requests.post(url = url, headers = headers, data = json.dumps(data))

 # Parse response to retrieve access token

 try :

 responseBody = json.loads(response.text)

 accessToken = responseBody["access_token"]

 except :

 errorMessage = "Error obtaining access token from Cloud Sync API"

 raise APIResponseError(errorMessage, response)

 ## Step 2: Obtain account ID

 # Define parameters for API call

 url = "https://cloudsync.netapp.com/api/accounts"

 headers = {

 "Content-Type": "application/json",

 "Authorization": "Bearer " + accessToken

 }

 # Call API to obtain account ID

 response = requests.get(url = url, headers = headers)

 # Parse response to retrieve account ID

 try :

 responseBody = json.loads(response.text)

 accountId = responseBody[0]["accountId"]

 except :

 errorMessage = "Error obtaining account ID from Cloud Sync API"

 raise APIResponseError(errorMessage, response)

 # Return access token and account ID

 return accessToken, accountId

 ## Function for monitoring the progress of the latest update for a specific Cloud Sync

relationship

 def netappCloudSyncMonitor(refreshToken: str, relationshipId: str, keepCheckingUntilComplete:

bool = True, printProgress: bool = True, printResponses: bool = False) :

 # Step 1: Obtain access token and account ID for accessing Cloud Sync API

 try :

 accessToken, accountId = netappCloudSyncAuth(refreshToken = refreshToken)

 except APIResponseError as err:

 if printResponse :

 errorMessage = err.args[0]

 response = err.args[1]

 print(errorMessage)

 printAPIResponse(response)

 raise

 # Step 2: Obtain status of the latest update; optionally, keep checking until the latest

update has completed

 while True :

 # Define parameters for API call

 url = "https://cloudsync.netapp.com/api/relationships-v2/%s" % (relationshipId)

 headers = {

 "Accept": "application/json",

 "x-account-id": accountId,

 "Authorization": "Bearer " + accessToken

 }

 # Call API to obtain status of latest update

 response = requests.get(url = url, headers = headers)

83 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 # Print API response

 if printResponses :

 printAPIResponse(response)

 # Parse response to retrieve status of latest update

 try :

 responseBody = json.loads(response.text)

 latestActivityType = responseBody["activity"]["type"]

 latestActivityStatus = responseBody["activity"]["status"]

 except :

 errorMessage = "Error retrieving status of latest update from Cloud Sync API"

 raise APIResponseError(errorMessage, response)

 # End execution if the latest update is complete

 if latestActivityType == "Sync" and latestActivityStatus == "DONE" :

 if printProgress :

 print("Success: Cloud Sync update is complete.")

 break

 # Print message re: progress

 if printProgress :

 print("Cloud Sync update is not yet complete.")

 # End execution if calling program doesn't want to monitor until the latest update

has completed

 if not keepCheckingUntilComplete :

 break

 # Sleep for 60 seconds before checking progress again

 print("Checking again in 60 seconds...")

 time.sleep(60)

 # Retrieve Cloud Sync refresh token from Airflow connection

 connections = get_connections(conn_id = airflowConnectionName)

 cloudSyncConnection = connections[0] # Assumes that you only have one connection with the

specified conn_id configured in Airflow

 refreshToken = cloudSyncConnection.password

 # Step 1: Obtain access token and account ID for accessing Cloud Sync API

 try :

 accessToken, accountId = netappCloudSyncAuth(refreshToken = refreshToken)

 except APIResponseError as err:

 errorMessage = err.args[0]

 response = err.args[1]

 print(errorMessage)

 if printResponse :

 printAPIResponse(response)

 raise

 # Step 2: Trigger Cloud Sync update

 # Define parameters for API call

 url = "https://cloudsync.netapp.com/api/relationships/%s/sync" % (relationshipId)

 headers = {

 "Content-Type": "application/json",

 "Accept": "application/json",

 "x-account-id": accountId,

 "Authorization": "Bearer " + accessToken

 }

 # Call API to trigger update

 print("Triggering Cloud Sync update.")

 response = requests.put(url = url, headers = headers)

 # Check for API response status code of 202; if not 202, raise error

 if response.status_code != 202 :

 errorMessage = "Error calling Cloud Sync API to trigger update."

 if printResponse :

 print(errorMessage)

84 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 printAPIResponse(response)

 raise APIResponseError(errorMessage, response)

 # Print API response

 if printResponse :

 print("Note: Status Code 202 denotes that update was successfully triggered.")

 printAPIResponse(response)

 print("Checking progress.")

 netappCloudSyncMonitor(refreshToken = refreshToken, relationshipId = relationshipId,

keepCheckingUntilComplete = keepCheckingUntilComplete, printResponses = printResponse)

Define DAG steps/workflow

with replicate_data_cloud_sync_dag as dag :

 # Define step to trigger a NetApp Cloud Sync update

 trigger_cloud_sync = PythonOperator(

 task_id='trigger-cloud-sync',

 python_callable=netappCloudSyncUpdate,

 op_kwargs={

 'airflowConnectionName': airflowConnectionName,

 'relationshipId': relationshipId

 },

 dag=dag

)

Trigger an XCP Copy or Sync Operation

The example DAG outlined in this section implements a workflow that invokes NetApp XCP to quickly and

reliably replicate data between NFS endpoints. Potential use cases include the following:

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the
cloud to be used for AI/ML model training or retraining.

• Replicating a newly trained or newly updated model from the core data center to the edge or to the
cloud to be deployed as part of an inferencing application.

• Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML
training environment for use in the training of an AI/ML model.

• Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance
AI/ML training environment for use in the training of an AI/ML model.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites.

1. You must have created a connection in Airflow for a host that is accessible via SSH and on which
NetApp XCP is installed and configured. For details regarding how to install and configure NetApp
XCP, refer to the NetApp XCP homepage and the official NetApp XCP documentation.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI.
The example screenshot that follows shows the creation of a connection for a specific host on which
NetApp XCP is installed and configured. The following values are required:

− Conn ID. Unique name for the connection.

− Conn Type. Must be set to SSH.

− Host. The host name or IP address of the host.

− Login. Username to use when accessing the host via SSH.

− Password. Password to use when accessing the host via SSH.

http://xcp.netapp.com/
https://mysupport.netapp.com/documentation/productlibrary/index.html?productID=63064

85 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS

section to match your environment.

Airflow DAG Definition: Replicate Data - XCP

Steps:

1. Invoke NetApp XCP copy or sync operation

from airflow.utils.dates import days_ago

from airflow.secrets import get_connections

from airflow.models import DAG

from airflow.operators.python_operator import PythonOperator

from airflow.contrib.operators.ssh_operator import SSHOperator

from datetime import datetime

DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####

Define default args for DAG

replicate_data_xcp_dag_default_args = {

 'owner': 'NetApp'

}

86 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Define DAG details

replicate_data_xcp_dag = DAG(

 dag_id='replicate_data_xcp',

 default_args=replicate_data_xcp_dag_default_args,

 schedule_interval=None,

 start_date=days_ago(2),

 tags=['data-movement']

)

Define xcp operation details (change values as necessary to match your environment and desired

operation)

Define xcp operation to perform

xcpOperation = 'sync' # Must be 'copy' or 'sync'

Define source and destination for copy operation

xcpCopySource = '192.168.200.41:/trident_pvc_957318e1_9b73_4e16_b857_dca7819dd263'

xcpCopyDestination = '192.168.200.41:/trident_pvc_9e7607c2_29c8_4dbf_9b08_551ba72d0273'

Define catalog id for sync operation

xcpSyncId = 'autoname_copy_2020-10-06_16.37.44.963391'

Define xcp host details (change values as necessary to match your environment)

xcpAirflowConnectionName = 'xcp_host' # Name of the Airflow connection of type 'ssh' that

contains connection details for a host on which xcp is installed, configured, and accessible

within $PATH

Construct xcp command

xcpCommand = 'xcp help'

if xcpOperation == 'copy' :

 xcpCommand = 'xcp copy ' + xcpCopySource + ' ' + xcpCopyDestination

elif xcpOperation == 'sync' :

 xcpCommand = 'xcp sync -id ' + xcpSyncId

Define DAG steps/workflow

with replicate_data_xcp_dag as dag :

 # Define step to invoke a NetApp XCP copy or sync operation

 invoke_xcp = SSHOperator(

 task_id="invoke-xcp",

 command=xcpCommand,

 ssh_conn_id=xcpAirflowConnectionName

)

Example Basic Trident Operations

This section includes examples of various operations that you may want to perform on your Kubernetes

cluster.

Import an Existing Volume

If there are existing volumes on your NetApp storage system/platform that you want to mount on

containers within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must

import these volumes. You can use the Trident volume import functionality to import these volumes.

The example commands that follow show the importing of the same volume, named pb_fg_all, twice,

once for each Trident backend that was created in the example in the section “Example Trident Backends

for ONTAP AI Deployments”, step 1. Importing the same volume twice in this manner enables you to

mount the volume (an existing FlexGroup volume) multiple times across different LIFs, as described in the

section “Example Trident Backends for ONTAP AI Deployments,” step 1. For more information about

87 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

PVCs, see the official Kubernetes documentation. For more information about the volume import

functionality, see the Trident documentation.

Note: An accessModes value of ReadOnlyMany is specified in the example PVC spec files. This
value means that multiple pods can mount these volumes at the same time and that access will
be read-only. For more information about the accessMode field, see the official Kubernetes
documentation.

Note: The backend names that are specified in the following example import commands are highlighted
for reference. These names correspond to the backends that were created in the example in the
section “Example Trident Backends for ONTAP AI Deployments,” step 1.

Note: The StorageClass names that are specified in the following example PVC definition files are
highlighted for reference. These names correspond to the StorageClasses that were created in
the example in the section “Example Kubernetes StorageClasses for ONTAP AI Deployments,”
step 1.

$ cat << EOF > ./pvc-import-pb_fg_all-iface1.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all-iface1

 namespace: default

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain-iface1

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-import-pb_fg_all-

iface1.yaml -n trident

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+--------------------------------+--------+-----------------------------------+----------+-------

-----------------------------------+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-iface1 | file |

b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true |

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+

$ cat << EOF > ./pvc-import-pb_fg_all-iface2.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all-iface2

 namespace: default

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain-iface2

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface2 pb_fg_all -f ./pvc-import-pb_fg_all-

iface2.yaml -n trident

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+--------------------------------+--------+-----------------------------------+----------+-------

-----------------------------------+--------+---------+

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-iface2 | file |

61814d48-c770-436b-9cb4-cf7ee661274d | online | true |

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+

$ tridentctl get volume -n trident

+----------------------------------+---------+-----------------------------------+----------+----

----------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

88 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

+----------------------------------+---------+-----------------------------------+----------+----

----------------------------------+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-iface1 | file |

b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true |

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-iface2 | file |

61814d48-c770-436b-9cb4-cf7ee661274d | online | true |

+----------------------------------+---------+-----------------------------------+----------+----

----------------------------------+--------+---------+

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1 10995116277760 ROX

ontap-ai-flexgroups-retain-iface1 25h

pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee 10995116277760 ROX

ontap-ai-flexgroups-retain-iface2 25h

Provision a New Volume

You can use Trident to provision a new volume on your NetApp storage system or platform. The following

example commands show the provisioning of a new FlexVol volume. In this example, the volume is

provisioned using the StorageClass that was created in the example in the section “Example Kubernetes

StorageClasses for ONTAP AI Deployments,” step 2.

Note: An accessModes value of ReadWriteMany is specified in the following example PVC definition
file. This value means that multiple containers can mount this PVC at the same time and that
access is read-write. For more information about the accessMode field, see the official
Kubernetes documentation.

$ cat << EOF > ./pvc-tensorflow-results.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: tensorflow-results

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-ai-flexvols-retain

EOF

$ kubectl create -f ./pvc-tensorflow-results.yaml

persistentvolumeclaim/tensorflow-results created

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1 10995116277760

ROX ontap-ai-flexgroups-retain-iface1 26h

pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee 10995116277760

ROX ontap-ai-flexgroups-retain-iface2 26h

tensorflow-results Bound default-tensorflow-results-2fd60 1073741824

RWX ontap-ai-flexvols-retain 25h

Example High-performance Jobs for ONTAP AI Deployments

This section includes examples of various high-performance jobs that can be executed when the NetApp

AI Control Plane solution is deployed on an ONTAP AI pod.

Execute a Single-Node AI Workload

To execute a single-node AI and ML job in your Kubernetes cluster, perform the following tasks from the

deployment jump host. With Trident, you can quickly and easily make a data volume, potentially

containing petabytes of data, accessible to a Kubernetes workload. To make such a data volume

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

89 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

accessible from within a Kubernetes pod, simply specify a PVC, such as one of the PVCs that was

created in the example in the section “Import an Existing Volume,” in the pod definition. This step is a

Kubernetes-native operation; no NetApp expertise is required.

Note: This section assumes that you have already containerized (in the Docker container format) the
specific AI and ML workload that you are attempting to execute in your Kubernetes cluster.

1. The following example commands show the creation of a Kubernetes job for a TensorFlow
benchmark workload that uses the ImageNet dataset. For more information about the ImageNet
dataset, see the ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that
features eight or more GPUs. This example job could be submitted in a cluster for which a worker
node featuring eight or more GPUs is not present or is currently occupied with another workload. If
so, then the job remains in a pending state until such a worker node becomes available.

Additionally, to provide the required amount of storage bandwidth, the volume that contains the
needed training data (the volume that was imported in the example in the section “Import an Existing
Volume”) is mounted twice within the pod that this job creates. See the highlighted lines in the
following job definition. See the section “Example Trident Backends for ONTAP AI Deployments”,
step 1, for details about why you might want to mount the same data volume multiple times. The
number of mounts that you need depends on the amount of bandwidth that the specific job requires.

The volume that was created in the example in the section “Provision a New Volume” is also mounted
in the pod. These volumes are referenced in the job definition by using the names of the PVCs. For
more information about Kubernetes jobs, see the official Kubernetes documentation.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this

example job creates. The default size of the /dev/shm virtual volume that is automatically created by

the Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an
emptyDir volume as in the following example provides a sufficiently large /dev/shm virtual volume.

For more information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext >

privileged value of true. This value means that the container effectively has root access on the

host. This annotation is used in this case because the specific workload that is being executed
requires root access. Specifically, a clear cache operation that the workload performs requires root
access. Whether or not this privileged: true annotation is necessary depends on the

requirements of the specific workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-tensorflow-single-imagenet

spec:

 backoffLimit: 5

 template:

 spec:

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

http://www.image-net.org/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

90 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--dgx_version=dgx1", "--num_devices=8"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml

job.batch/netapp-tensorflow-single-imagenet created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 0/1 24s 24s

2. Confirm that the job that you created in step 1 is running correctly. The following example command
confirms that a single pod was created for the job, as specified in the job definition, and that this pod
is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-single-imagenet-m7x92 1/1 Running 0 3m

10.233.68.61 10.61.218.154 <none>

3. Confirm that the job that you created in step 1 completes successfully. The following example
commands confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 1/1 5m42s 10m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed 0 11m

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c

at line 702

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c

at line 711

Total images/sec = 6530.59125

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 > /proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x

LD_LIBRARY_PATH -x PATH python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --

model=resnet50 --batch_size=256 --device=gpu --force_gpu_compatible=True --num_intra_threads=1 --

num_inter_threads=48 --variable_update=horovod --batch_group_size=20 --num_batches=500 --

nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True --use_tf_layers=False --

data_name=imagenet --use_datasets=True --data_dir=/mnt/mount_0/dataset/imagenet --

datasets_parallel_interleave_cycle_length=10 --datasets_sloppy_parallel_interleave=False --

num_mounts=2 --mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4 --horovod_device=gpu >

/tmp/20190814_105450_tensorflow_horovod_rdma_resnet50_gpu_8_256_b500_imagenet_nodistort_fp16_r10_

m2_nockpt.txt 2>&1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job
object that was created in step 1.

 When you delete the job object, Kubernetes automatically deletes any associated pods.

91 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 1/1 5m42s 10m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed 0 11m

$ kubectl delete job netapp-tensorflow-single-imagenet

job.batch "netapp-tensorflow-single-imagenet" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

Execute a Synchronous Distributed AI Workload

To execute a synchronous multinode AI and ML job in your Kubernetes cluster, perform the following

tasks on the deployment jump host. This process enables you to take advantage of data that is stored on

a NetApp volume and to use more GPUs than a single worker node can provide. See Figure 9 for a

visualization.

Note: Synchronous distributed jobs can help increase performance and training accuracy compared
with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs versus
asynchronous jobs is outside the scope of this document.

Figure 9) Synchronous distributed AI job.

1. The following example commands show the creation of one worker that participates in the
synchronous distributed execution of the same TensorFlow benchmark job that was executed on a
single node in the example in the section “Execute a Single-Node AI Workload.” In this specific
example, only a single worker is deployed because the job is executed across two worker nodes.

This example worker deployment requests eight GPUs and thus can run on a single GPU worker
node that features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to
maximize performance, you might want to increase this number to be equal to the number of GPUs
that your worker nodes feature. For more information about Kubernetes deployments, see the official
Kubernetes documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would
never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job
construct. If your worker is designed or written to complete on its own, then it might make sense to
use the job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of

true. This value means that the pod uses the host worker node’s networking stack instead of the

virtual networking stack that Kubernetes usually creates for each pod. This annotation is used in this
case because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload
in a synchronous distributed manner. Therefore, it requires access to the host networking stack. A

TensorFlow
Worker

TensorFlow
Master

Kubernetes (k8s) Cluster

Data

Master Node GPU Node 1 GPU Node 2

Kube API

data volume

Data

Trident Trident

Data Data

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

92 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

discussion about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or
not this hostNetwork: true annotation is necessary depends on the requirements of the specific

workload that you are executing. For more information about the hostNetwork field, see the official

Kubernetes documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: netapp-tensorflow-multi-imagenet-worker

spec:

 replicas: 1

 selector:

 matchLabels:

 app: netapp-tensorflow-multi-imagenet-worker

 template:

 metadata:

 labels:

 app: netapp-tensorflow-multi-imagenet-worker

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["bash", "/netapp/scripts/start-slave-multi.sh", "22122"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml

deployment.apps/netapp-tensorflow-multi-imagenet-worker created

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1 1 4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following
example commands confirm that a single worker pod was created for the deployment, as indicated in
the deployment definition, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1 Running 0 60s

10.61.218.154 10.61.218.154 <none>

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces

93 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the
synchronous multinode job. The following example commands create one master that kicks off,
participates in, and tracks the synchronous distributed execution of the same TensorFlow benchmark
job that was executed on a single node in the example in the section “Execute a Single-Node AI
Workload.”

This example master job requests eight GPUs and thus can run on a single GPU worker node that
features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize
performance, you might want to increase this number to be equal to the number of GPUs that your
worker nodes feature.

 The master pod that is specified in this example job definition is given a hostNetwork value
of true, just as the worker pod was given a hostNetwork value of true in step 1. See step
1 for details about why this value is necessary.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-tensorflow-multi-imagenet-master

spec:

 backoffLimit: 5

 template:

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--port=22122", "--num_devices=16", "--

dgx_version=dgx1", "--nodes=10.61.218.152,10.61.218.154"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml

job.batch/netapp-tensorflow-multi-imagenet-master created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 0/1 25s 25s

94 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

4. Confirm that the master job that you created in step 3 is running correctly. The following example
command confirms that a single master pod was created for the job, as indicated in the job definition,
and that this pod is currently running on one of the GPU worker nodes. You should also see that the
worker pod that you originally saw in step 1 is still running and that the master and worker pods are
running on different nodes.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-multi-imagenet-master-ppwwj 1/1 Running 0 45s

10.61.218.152 10.61.218.152 <none>

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1 Running 0 26m

10.61.218.154 10.61.218.154 <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example
commands confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 9m18s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 9m38s

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1 Running 0 35m

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppwwj

[10.61.218.152:00008] WARNING: local probe returned unhandled shell:unknown assuming bash

rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 702

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 711

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 702

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 711

Total images/sec = 12881.33875

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca pml ob1 -mca btl ^openib

-mca btl_tcp_if_include enp1s0f0 -mca plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" bash -c

'sync; echo 1 > /proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8 -bind-to none -map-by slot -x

NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH -mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include

enp1s0f0 -x NCCL_IB_HCA=mlx5 -x NCCL_NET_GDR_READ=1 -x NCCL_IB_SL=3 -x NCCL_IB_GID_INDEX=3 -x

NCCL_SOCKET_IFNAME=enp5s0.3091,enp12s0.3092,enp132s0.3093,enp139s0.3094 -x NCCL_IB_CUDA_SUPPORT=1

-mca orte_base_help_aggregate 0 -mca plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --

model=resnet50 --batch_size=256 --device=gpu --force_gpu_compatible=True --num_intra_threads=1 --

num_inter_threads=48 --variable_update=horovod --batch_group_size=20 --num_batches=500 --

nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True --use_tf_layers=False --

data_name=imagenet --use_datasets=True --data_dir=/mnt/mount_0/dataset/imagenet --

datasets_parallel_interleave_cycle_length=10 --datasets_sloppy_parallel_interleave=False --

num_mounts=2 --mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4 --horovod_device=gpu >

/tmp/20190814_161609_tensorflow_horovod_rdma_resnet50_gpu_16_256_b500_imagenet_nodistort_fp16_r10

_m2_nockpt.txt 2>&1

6. Delete the worker deployment when you no longer need it. The following example commands show
the deletion of the worker deployment object that was created in step 1.

 When you delete the worker deployment object, Kubernetes automatically deletes any
associated worker pods.

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1 1 43m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 17m

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1 Running 0 43m

$ kubectl delete deployment netapp-tensorflow-multi-imagenet-worker

deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted

$ kubectl get deployments

95 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

No resources found.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of
the master job object that was created in step 3.

 When you delete the master job object, Kubernetes automatically deletes any associated
master pods.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 19m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 19m

$ kubectl delete job netapp-tensorflow-multi-imagenet-master

job.batch "netapp-tensorflow-multi-imagenet-master" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

Performance Testing

We performed a simple performance comparison as part of the creation of this solution. We executed

several standard NetApp benchmarking jobs by using Kubernetes, and we compared the benchmark

results with executions that were performed by using a simple Docker run command. We did not see any

noticeable differences in performance. Therefore, we concluded that the use of Kubernetes to orchestrate

containerized jobs does not adversely affect performance. Table 3 lists the results of our performance

comparison.

Table 3) Performance comparison results.

Benchmark Dataset Docker Run
(images/sec)

Kubernetes
(images/sec)

Single-node TensorFlow Synthetic data 6,667.2475 6,661.93125

Single-node TensorFlow ImageNet 6,570.2025 6,530.59125

Synchronous distributed two-node TensorFlow Synthetic data 13,213.70625 13,218.288125

Synchronous distributed two-node TensorFlow ImageNet 12,941.69125 12,881.33875

Conclusion

Companies and organizations of all sizes and across all industries are turning to artificial intelligence (AI),

machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative products

and services, and to get an edge in an increasingly competitive marketplace. As organizations increase

their use of AI, ML, and DL, they face many challenges, including workload scalability and data

availability. These challenges can be addressed through the use of the NetApp AI Control Plane,

NetApp’s full stack AI data and experiment management solution.

This solution enables you to rapidly clone a data namespace just as you would a Git repo. Additionally, it

allows you to define and implement AI, ML, and DL training workflows that incorporate the near-instant

creation of data and model baselines for traceability and versioning. With this solution, you can trace

every single model training run back to the exact dataset(s) that the model was trained and/or validated

with. Lastly, this solution enables you to swiftly provision Jupyter Notebook workspaces with access to

massive datasets.

96 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Because this solution is targeted towards data scientists and data engineers, no NetApp or NetApp

ONTAP expertise is required. With this solution, data management functions can be executed using

simple and familiar tools and interfaces. Furthermore, this solution utilizes fully open-source and free

components. Therefore, if you already have NetApp storage in your environment, you can implement this

solution today. If you want to test drive this solution but you do not have already have NetApp storage,

visit cloud.netapp.com, and you can be up and running with a cloud-based NetApp storage solution in no

time.

Acknowledgments

• David Arnette, Technical Marketing Engineer, NetApp

• Sung-Han Lin, Performance Analyst, NetApp

• Steve Guhr, Solutions Engineer, NetApp

• Muneer Ahmad, Solutions Architect, NetApp

• Santosh Rao, Senior Technical Director, NetApp

• Bala Ramesh, Technical Marketing Engineer, NetApp

• George Tehrani, Product Manager, NetApp

Where to Find Additional Information

To learn more about the information that is described in this document, see the following resources:

• NVIDIA DGX-1 servers:

− NVIDIA DGX-1 servers
https://www.nvidia.com/en-us/data-center/dgx-1/

− NVIDIA Tesla V100 Tensor Core GPU
https://www.nvidia.com/en-us/data-center/tesla-v100/

− NVIDIA GPU Cloud (NGC)
https://www.nvidia.com/en-us/gpu-cloud/

• NetApp AFF systems:

− AFF datasheet
https://www.netapp.com/us/media/ds-3582.pdf

− NetApp FlashAdvantage for AFF
https://www.netapp.com/us/media/ds-3733.pdf

− ONTAP 9.x documentation
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

− NetApp FlexGroup technical report
https://www.netapp.com/us/media/tr-4557.pdf

• NetApp persistent storage for containers:

− NetApp Trident
https://netapp.io/persistent-storage-provisioner-for-kubernetes/

• NetApp Interoperability Matrix:

− NetApp Interoperability Matrix Tool
http://support.netapp.com/matrix

• ONTAP AI networking:

− Cisco Nexus 3232C Switches
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html

http://cloud.netapp.com/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
http://support.netapp.com/matrix
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html

97 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

− Mellanox Spectrum 2000 series switches
http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000

• ML framework and tools:

− DALI
https://github.com/NVIDIA/DALI

− TensorFlow: An Open-Source Machine Learning Framework for Everyone
https://www.tensorflow.org/

− Horovod: Uber’s Open-Source Distributed Deep Learning Framework for TensorFlow
https://eng.uber.com/horovod/

− Enabling GPUs in the Container Runtime Ecosystem
https://devblogs.nvidia.com/gpu-containers-runtime/

− Docker
https://docs.docker.com

− Kubernetes
https://kubernetes.io/docs/home/

− NVIDIA DeepOps
https://github.com/NVIDIA/deepops

− Kubeflow
http://www.kubeflow.org/

− Jupyter Notebook Server
http://www.jupyter.org/

• Dataset and benchmarks:

− ImageNet
http://www.image-net.org/

− COCO
http://cocodataset.org/

− Cityscapes
https://www.cityscapes-dataset.com/

− nuScenes
www.nuscenes.org

− SECOND: Sparsely Embedded Convolutional Detection model
https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf

− TensorFlow benchmarks
https://github.com/tensorflow/benchmarks

Version History

Version Date Document Version History

Version 1.0 September 2019 Initial release.

Version 2.0 September 2019 Added sections on triggering Snapshot copies/FlexClone
volumes using kubectl commands (removed from document in
version 3.0); added section on Kubeflow (“NVIDIA DeepOps”
and “Kubeflow.”*); added Figure 9; and updated DeepOps
troubleshooting instructions.

Version 3.0 March 2020 Added section on creating a Snapshot from within a Jupyter
Notebook (“Create a Snapshot of an ONTAP Volume from
Within a Jupyter Notebook”); added example Kubeflow
pipelines (“Create a Kubeflow Pipeline to Execute an End-to-
End AI Training Workflow with Built-in Traceability and

http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000
https://github.com/NVIDIA/DALI
https://www.tensorflow.org/
https://eng.uber.com/horovod/
https://devblogs.nvidia.com/gpu-containers-runtime/
https://docs.docker.com/
https://kubernetes.io/docs/home/
https://github.com/NVIDIA/deepops
http://www.kubeflow.org/
http://www.jupyter.org/
http://www.image-net.org/
http://cocodataset.org/
https://www.cityscapes-dataset.com/
http://www.nuscenes.org/
https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
https://github.com/tensorflow/benchmarks

98 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Version Date Document Version History

Versioning” and “Create a Kubeflow Pipeline to Rapidly Clone a
Dataset for a Data Scientist Workspace”); added NetApp
Snapshot copies and NetApp FlexClone technology
descriptions to the “Concepts and Components” section; and
reordered sections within document; and removed sections on
triggering Snapshot copies/FlexClone volumes using kubectl
commands (due to Kubernetes API changes).

Version 4.0 May 2020 Added example Kubeflow pipeline (“Create a Kubeflow Pipeline
to Trigger a SnapMirror Volume Replication Update”); added
NetApp SnapMirror technology description (“NetApp SnapMirror
Data Replication Technology”); and updated Abstract and
Introduction.

Version 5.0 June 2020 Added example Jupyter Notebook (“Trigger a Cloud Sync
Replication Update from Within a Jupyter Notebook”); added
example Kubeflow pipeline (“Create a Kubeflow Pipeline to
Trigger a Cloud Sync Replication Update”); updated example
Kubeflow pipeline to use Trident-based annotation cloning
method (“Create a Kubeflow Pipeline to Rapidly Clone a
Dataset for a Data Scientist Workspace”); added NetApp Cloud
Sync technology description (“NetApp Cloud Sync”); added
DeepOps option for deploying Trident (“Install Trident”); fixed
formatting error in the section “Create a Kubeflow Pipeline to
Trigger a SnapMirror Volume Replication Update;” and removed
all references to NKS.

Version 6.0 October 2020 Added Apache Airflow sections (sections “Apache Airflow,”
“Apache Airflow Deployment,” and “Example Apache Airflow
Workflows”); added references to Git repo containing example
Kubeflow pipelines and Jupyter Notebooks (“Example Kubeflow
Operations and Tasks”); added NetApp XCP to “Concepts and
Components;” reworded introduction.

99 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved.

Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact
product and feature versions described in this document are supported for your specific environment. The
NetApp IMT defines the product components and versions that can be used to construct configurations
that are supported by NetApp. Specific results depend on each customer’s installation in accordance with
published specifications.

Copyright Information

Copyright © 2020 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered
by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical,
including photocopying, recording, taping, or storage in an electronic retrieval system—without prior
written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY
DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.
NetApp assumes no responsibility or liability arising from the use of products described herein, except as
expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license
under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to
NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide,
limited irrevocable license to use the Data only in connection with and in support of the U.S. Government
contract under which the Data was delivered. Except as provided herein, the Data may not be used,
disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp,
Inc. United States Government license rights for the Department of Defense are limited to those rights
identified in DFARS clause 252.227-7015(b).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of
NetApp, Inc. Other company and product names may be trademarks of their respective owners.

TR-4798-0720

http://mysupport.netapp.com/matrix
http://www.netapp.com/TM

