

Technical Report

NetApp AI Control Plane

Pairing Popular Open-Source Tools with NetApp to Enable AI, ML, and DL Data and Experiment Management

Mike Oglesby, NetApp October 2020 | TR-4798

Abstract

As organizations increase their use of artificial intelligence (AI), they face many challenges, including workload scalability and data availability. This document demonstrates how to address these challenges through the use of NetApp[®] AI Control Plane, a solution that pairs NetApp data management capabilities with popular open-source tools and frameworks that are used by data scientists and data engineers. In this document, we show you how to rapidly clone a data namespace just as you would a Git repo. We demonstrate how to define and implement AI training workflows that incorporate the near-instant creation of data and model baselines for traceability and versioning. We also show how to seamlessly replicate data across sites and regions and swiftly provision Jupyter Notebook workspaces with access to massive datasets.

TABLE OF CONTENTS

1	Introduction	5
2	Concepts and Components	6
	2.1 Artificial Intelligence	6
	2.2 Containers	6
	2.3 Kubernetes	7
	2.4 NetApp Trident	7
	2.5 NVIDIA DeepOps	7
	2.6 Kubeflow	7
	2.7 Apache Airflow	8
	2.8 NetApp ONTAP 9	8
	2.9 NetApp Snapshot Copies	9
	2.10 NetApp FlexClone Technology	10
	2.11 NetApp SnapMirror Data Replication Technology	11
	2.12 NetApp Cloud Sync	12
	2.13 NetApp XCP	12
	2.14 NetApp ONTAP FlexGroup Volumes	12
3	Hardware and Software Requirements	13
4	Support	14
5	Kubernetes Deployment	14
	5.1 Prerequisites	14
	5.2 Use NVIDIA DeepOps to Install and Configure Kubernetes	15
6	NetApp Trident Deployment and Configuration	15
	6.1 Prerequisites	15
	6.2 Install Trident	15
	6.3 Example Trident Backends for ONTAP AI Deployments	16
	6.4 Example Kubernetes StorageClasses for ONTAP AI Deployments	18
7	Kubeflow Deployment	19
	7.1 Prerequisites	19
	7.2 Set Default Kubernetes StorageClass	20
	7.3 Use NVIDIA DeepOps to Deploy Kubeflow	20
8	Example Kubeflow Operations and Tasks	
0	8.1 Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use	
	יו איזטערא איטראאנער איטראאנער איטראאנער איזערא	

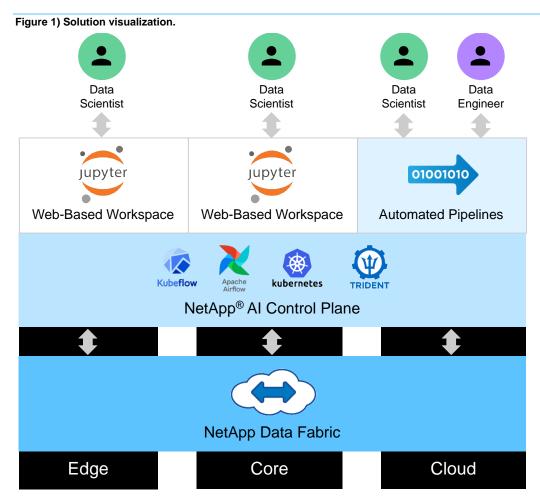
	8.2	Create a Snapshot of an ONTAP Volume from Within a Jupyter Notebook	31
	8.3	Trigger a Cloud Sync Replication Update from Within a Jupyter Notebook	35
	8.4	Create a Kubeflow Pipeline to Execute an End-to-End AI Training Workflow with Built-in Traceability and Versioning	
	8.5	Create a Kubeflow Pipeline to Rapidly Clone a Dataset for a Data Scientist Workspace	54
	8.6	Create a Kubeflow Pipeline to Trigger a SnapMirror Volume Replication Update	61
	8.7	Create a Kubeflow Pipeline to Trigger a Cloud Sync Replication Update	62
9	Ара	che Airflow Deployment	. 64
	9.1	Prerequisites	64
	9.2	Install Helm	64
	9.3	Set Default Kubernetes StorageClass	64
	9.4	Use Helm to Deploy Airflow	64
10	Exa	mple Apache Airflow Workflows	67
	10.1	Implement an End-to-End AI Training Workflow with Built-in Traceability and Versioning	67
	10.2	Rapidly Clone a Dataset to create a Data Scientist Workspace	72
	10.3	Trigger a SnapMirror Volume Replication Update	76
	10.4	Trigger a Cloud Sync Replication Update	79
	10.5	Trigger an XCP Copy or Sync Operation	84
11	Exa	mple Basic Trident Operations	. 86
	11.1	Import an Existing Volume	86
	11.2	Provision a New Volume	88
12	Exa	mple High-performance Jobs for ONTAP AI Deployments	. 88
	12.1	Execute a Single-Node AI Workload	88
	12.2	Execute a Synchronous Distributed AI Workload	91
13	Per	formance Testing	. 95
14	Cor	clusion	. 95
Ac	knov	vledgments	96
Wł	nere 1	o Find Additional Information	. 96
Ve	rsior	History	97

LIST OF TABLES

Table 1) Validation environment infrastructure details	.14
Table 2) Validation environment software version details.	.14

Table 3) Performance comparison results	95
---	----

LIST OF FIGURES


Figure 1) Solution visualization	5
Figure 2) Virtual machines versus containers	6
Figure 3) Kubeflow visualization.	8
Figure 4) NetApp Snapshot copies	10
Figure 5) NetApp FlexClone technology	11
Figure 6) NetApp SnapMirror example	11
Figure 7) Cloud Sync	12
Figure 8) NetApp FlexGroup volumes.	13
Figure 9) Synchronous distributed AI job	91

Introduction

Companies and organizations of all sizes and across many industries are turning to artificial intelligence (AI), machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative products and services, and to get an edge in an increasingly competitive marketplace. As organizations increase their use of AI, ML, and DL, they face many challenges, including workload scalability and data availability. This document demonstrates how you can address these challenges by using the NetApp AI Control Plane, a solution that pairs NetApp data management capabilities with popular open-source tools and frameworks.

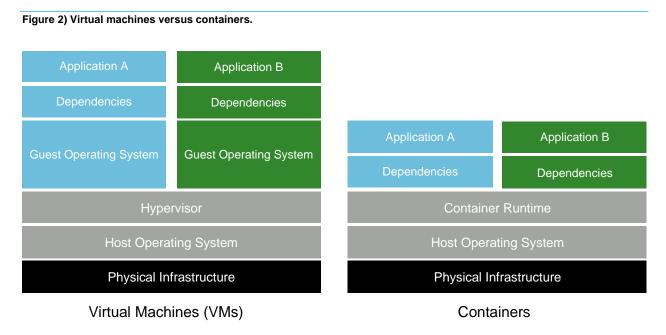
This report shows you how to rapidly clone a data namespace just as you would a Git repo. It also shows you how to seamlessly replicate data across sites and regions to create a cohesive and unified AI/ML/DL data pipeline. Additionally, it walks you through the defining and implementing of AI, ML, and DL training workflows that incorporate the near-instant creation of data and model baselines for traceability and versioning. With this solution, you can trace every model training run back to the exact dataset that was used to train and/or validate the model. Lastly, this document shows you how to swiftly provision Jupyter Notebook workspaces with access to massive datasets.

The NetApp AI Control Plane is targeted towards data scientists and data engineers, and, thus, minimal NetApp or NetApp ONTAP[®] expertise is required. With this solution, data management functions can be executed using simple and familiar tools and interfaces. If you already have NetApp storage in your environment, you can test drive the NetApp AI Control plane today. If you want to test drive the solution but you do not have already have NetApp storage, visit <u>cloud.netapp.com</u>, and you can be up and running with a cloud-based NetApp storage solution in minutes.

Concepts and Components

Artificial Intelligence

Al is a computer science discipline in which computers are trained to mimic the cognitive functions of the human mind. Al developers train computers to learn and to solve problems in a manner that is similar to, or even superior to, humans. Deep learning and machine learning are subfields of Al. Organizations are increasingly adopting Al, ML, and DL to support their critical business needs. Some examples are as follows:


- Analyzing large amounts of data to unearth previously unknown business insights
- Interacting directly with customers by using natural language processing
- Automating various business processes and functions

Modern AI training and inference workloads require massively parallel computing capabilities. Therefore, GPUs are increasingly being used to execute AI operations because the parallel processing capabilities of GPUs are vastly superior to those of general-purpose CPUs.

Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel. The adoption of containers is increasing rapidly. Containers offer many of the same application sandboxing benefits that virtual machines (VMs) offer. However, because the hypervisor and guest operating system layers that VMs rely on have been eliminated, containers are far more lightweight. See Figure 2 for a visualization.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly with an application. The most commonly used container packaging format is the Docker container. An application that has been containerized in the Docker container format can be executed on any machine that can run Docker containers. This is true even if the application's dependencies are not present on the machine because all dependencies are packaged in the container itself. For more information, visit the Docker website.

Kubernetes

Kubernetes is an open source, distributed, container orchestration platform that was originally designed by Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes enables the automation of deployment, management, and scaling functions for containerized applications. In recent years, Kubernetes has emerged as the dominant container orchestration platform. Although other container packaging formats and run times are supported, Kubernetes is most often used as an orchestration system for Docker containers. For more information, visit the <u>Kubernetes website</u>.

NetApp Trident

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly simplifies the creation, management, and consumption of persistent storage for Kubernetes workloads. Trident, itself a Kubernetes-native application, runs directly within a Kubernetes cluster. With Trident, Kubernetes users (developers, data scientists, Kubernetes administrators, and so on) can create, manage, and interact with persistent storage volumes in the standard Kubernetes format that they are already familiar with. At the same time, they can take advantage of NetApp advanced data management capabilities and a data fabric that is powered by NetApp technology. Trident abstracts away the complexities of persistent storage and makes it simple to consume. For more information, visit the <u>Trident website</u>.

NVIDIA DeepOps

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of GPU server clusters according to best practices. DeepOps is modular and can be used for various deployment tasks. For this document and the validation exercise that it describes, DeepOps is used to deploy a Kubernetes cluster that consists of GPU server worker nodes. For more information, visit the DeepOps website.

Kubeflow

Kubeflow is an open source AI and ML toolkit for Kubernetes that was originally developed by Google. The Kubeflow project makes deployments of AI and ML workflows on Kubernetes simple, portable, and scalable. Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what they know best—data science. See Figure 3 for a visualization. Kubeflow has been gaining significant traction as enterprise IT departments have increasingly standardized on Kubernetes. For more information, visit the Kubeflow website.

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for defining and deploying portable and scalable AI and ML workflows. For more information, see the <u>official</u> <u>Kubeflow documentation</u>.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows data scientists to create wikilike documents called Jupyter Notebooks that contain live code as well as descriptive test. Jupyter Notebooks are widely used in the AI and ML community as a means of documenting, storing, and sharing AI and ML projects. Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on Kubernetes. For more information on Jupyter Notebooks, visit the <u>Jupyter website</u>. For more information about Jupyter Notebooks within the context of Kubeflow, see the <u>official Kubeflow documentation</u>.

Figure 3) Kubeflow visualization. Image: Compute/Cloud Image: Compute/Cloud Image: Compute/Cloud

Apache Airflow

Apache Airflow is an open-source workflow management platform that enables programmatic authoring, scheduling, and monitoring for complex enterprise workflows. It is often used to automate ETL and data pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by Airbnb but has since become very popular in the industry and now falls under the auspices of The Apache Software Foundation. Airflow is written in Python, Airflow workflows are created via Python scripts, and Airflow is designed under the principle of "configuration as code." Many enterprise Airflow users now run Airflow on top of Kubernetes.

Directed Acyclic Graphs (DAGs)

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are executed in sequence, in parallel, or a combination of the two, depending on the DAG definition. The Airflow scheduler executes individual tasks on an array of workers, adhering to the task-level dependencies that are specified in the DAG definition. DAGs are defined and created via Python scripts.

NetApp ONTAP 9

NetApp ONTAP 9 is the latest generation of storage management software from NetApp that enables businesses like yours to modernize infrastructure and to transition to a cloud-ready data center. With industry-leading data management capabilities, ONTAP enables you to manage and protect your data with a single set of tools regardless of where that data resides. You can also move data freely to wherever you need it: the edge, the core, or the cloud. ONTAP 9 includes numerous features that simplify data management, accelerate and protect your critical data, and future-proof your infrastructure across hybrid cloud architectures.

Simplify Data Management

Data management is crucial for your enterprise IT operations so that you can use appropriate resources for your applications and datasets. ONTAP includes the following features to streamline and simplify your operations and reduce your total cost of operation:

- Inline data compaction and expanded deduplication. Data compaction reduces wasted space inside storage blocks, and deduplication significantly increases effective capacity.
- **Minimum, maximum, and adaptive quality of service (QoS).** Granular QoS controls help maintain performance levels for critical applications in highly shared environments.
- **ONTAP FabricPool.** This feature provides automatic tiering of cold data to public and private cloud storage options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID[®] object-based storage.

Accelerate and Protect Data

ONTAP delivers superior levels of performance and data protection and extends these capabilities with the following features:

- **High performance and low latency.** ONTAP offers the highest possible throughput at the lowest possible latency.
- NetApp ONTAP FlexGroup technology. A FlexGroup volume is a high-performance data container that can scale linearly to up to 20PB and 400 billion files, providing a single namespace that simplifies data management.
- **Data protection.** ONTAP provides built-in data protection capabilities with common management across all platforms.
- **NetApp Volume Encryption.** ONTAP offers native volume-level encryption with both onboard and external key management support.

Future-Proof Infrastructure

ONTAP 9 helps meet your demanding and constantly changing business needs:

- Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of capacity to existing controllers and to scale-out clusters. You can upgrade to the latest technologies, such as NVMe and 32Gb FC, without costly data migrations or outages.
- Cloud connection. ONTAP is one of the most cloud-connected storage management software, with
 options for software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud
 Volumes Service) in all public clouds.
- Integration with emerging applications. By using the same infrastructure that supports existing enterprise apps, ONTAP offers enterprise-grade data services for next-generation platforms and applications such as OpenStack, Hadoop, and MongoDB.

NetApp Snapshot Copies

A NetApp Snapshot[™] copy is a read-only, point-in-time image of a volume. The image consumes minimal storage space and incurs negligible performance overhead because it only records changes to files create since the last Snapshot copy was made.

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write Anywhere File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on disk. But, unlike a database, WAFL does not overwrite existing blocks. It writes updated data to a new block and changes the metadata. It's because ONTAP references metadata when it creates a Snapshot copy, rather than copying data blocks, that Snapshot copies are so efficient. Doing so eliminates the "seek time" that other systems incur in locating the blocks to copy, as well as the cost of making the copy itself.

You can use a Snapshot copy to recover individual files or LUNs or to restore the entire contents of a volume. ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the missing or damaged object, without downtime or a significant performance cost.

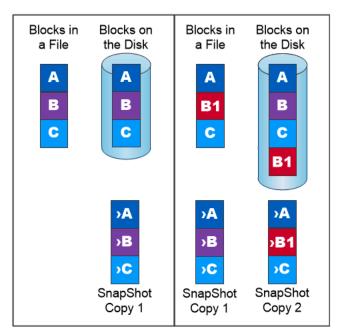
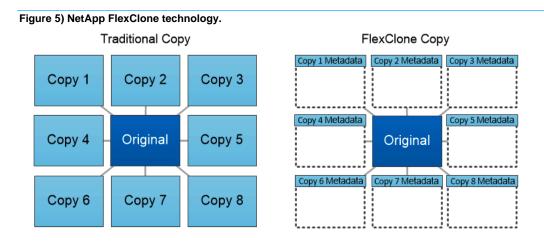



Figure 4) NetApp Snapshot copies.

A Snapshot copy records only changes to the active file system since the last Snapshot copy.

NetApp FlexClone Technology

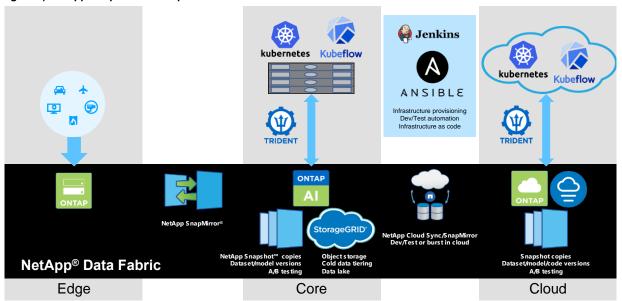
NetApp FlexClone[®] technology references Snapshot metadata to create writable, point-in-time copies of a volume. Copies share data blocks with their parents, consuming no storage except what is required for metadata, until changes are written to the copy. Where traditional copies can take minutes or even hours to create, FlexClone software lets you copy even the largest datasets almost instantaneously. That makes it ideal for situations in which you need multiple copies of identical datasets (a development workspace, for example) or temporary copies of a dataset (testing an application against a production dataset).

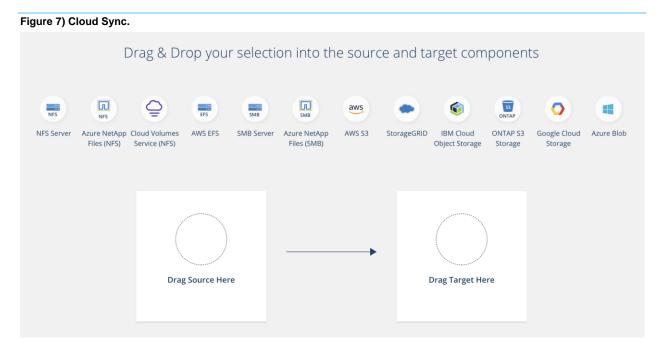
FlexClone copies share data blocks with their parents, consuming no storage except what is required for metadata.

NetApp SnapMirror Data Replication Technology

NetApp SnapMirror[®] software is a cost-effective, easy-to-use unified replication solution across the data fabric. It replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data replication for applications of all types, including business critical applications in both virtual and traditional environments. When you replicate data to one or more NetApp storage systems and continually update the secondary data, your data is kept current and is available whenever you need it. No external replication servers are required. See Figure 6 for an example of an architecture that leverages SnapMirror technology.

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over the network. SnapMirror software also uses built-in network compression to accelerate data transfers and reduce network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one thin replication data stream to create a single repository that maintains both the active mirror and prior point-in-time copies, reducing network traffic by up to 50%.




Figure 6) NetApp SnapMirror example.

NetApp Cloud Sync

Cloud Sync is a NetApp service for rapid and secure data synchronization. Whether you need to transfer files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp Cloud Volumes Service, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or IBM Cloud Object Storage, Cloud Sync moves the files where you need them quickly and securely.

After your data is transferred, it is fully available for use on both source and target. Cloud Sync can sync data on-demand when an update is triggered or continuously sync data based on a predefined schedule. Regardless, Cloud Sync only moves the deltas, so time and money spent on data replication is minimized.

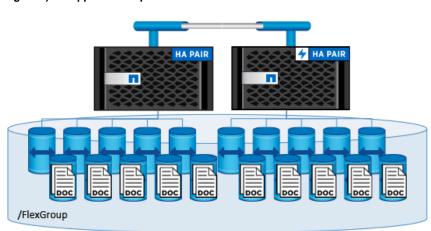
Cloud Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data transfers that are triggered by Cloud Sync are carried out by data brokers. Cloud Sync data brokers can be deployed in AWS, Azure, Google Cloud Platform, or on-premises.

NetApp XCP

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file system insights. XCP is designed to scale and achieve maximum performance by utilizing all available system resources to handle high-volume datasets and high-performance migrations. XCP helps you to gain complete visibility into the file system with the option to generate reports.

NetApp XCP is available in a single package that supports NFS and SMB protocols. XCP includes a Linux binary for NFS data sets and a windows executable for SMB data sets.

NetApp XCP File Analytics is host-based software that detects file shares, runs scans on the file system, and provides a dashboard for file analytics. XCP File Analytics is compatible with both NetApp and non-NetApp systems and runs on Linux or Windows hosts to provide analytics for NFS and SMB-exported file systems.


NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video, and other forms of unstructured data that must be stored and processed to be read in parallel. The

storage system must store large numbers of small files and must read those files in parallel for sequential and random I/O.

A FlexGroup volume (Figure 8) is a single namespace that comprises multiple constituent member volumes. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a NetApp FlexVol[®] volume. Files in a FlexGroup volume are allocated to individual member volumes and are not striped across volumes or nodes. They enable the following capabilities:

- FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for highmetadata workloads.
- They support up to 400 billion files in the same namespace.
- They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and constituent FlexVol volumes.

Figure 8) NetApp FlexGroup volumes.

Hardware and Software Requirements

All procedures outlined in this document were validated on the NetApp ONTAP AI converged infrastructure solution described in <u>NVA-1121</u>. This verified architecture pairs a NetApp AFF A800 all-flash storage system with the NVIDIA DGX-1 Deep Learning System using Cisco Nexus networking. For this validation exercise, two bare-metal NVIDIA DGX-1 systems, each featuring eight NVIDIA V100 GPUs, were used as Kubernetes worker nodes. A NetApp AFF A800 all-flash storage system provided a single persistent storage namespace across nodes, and two Cisco Nexus 3232C switches were used to provide network connectivity. Three virtual machines (VMs) that ran on a separate physical server outside of the ONTAP AI pod were used as Kubernetes master nodes. See Table 1 for validation environment infrastructure details. See Table 2 for validation environment software version details.

Note, however, that the NetApp AI Control Plane solution that is outlined in this document is not dependent on this specific hardware. The solution is compatible with any NetApp physical storage appliance, software-defined instance, or cloud service, that supports the NFS protocol. Examples include a NetApp AFF storage system, Azure NetApp Files, NetApp Cloud Volumes Service, a NetApp ONTAP Select software-defined storage instance, or a NetApp Cloud Volumes ONTAP instance. Additionally, the solution can be implemented on any Kubernetes cluster as long as the Kubernetes version used is supported by Kubeflow and NetApp Trident. For a list of Kubernetes versions that are supported by Kubeflow, see the see the <u>official Kubeflow documentation</u>. For a list of Kubernetes versions that are supported by Trident, see the <u>Trident documentation</u>.

Table 1) Validation environment infrastructure details.						
Component	Quantity	Details	Operating System			
Deployment jump host	1	VM	Ubuntu 18.04.5 LTS			
Kubernetes master nodes	3	VM	Ubuntu 18.04.5 LTS			
Kubernetes worker nodes	2	NVIDIA DGX-1 (bare-metal)	NVIDIA DGX OS 4.0.5 (based on Ubuntu 18.04.2 LTS)			
Storage	1 HA Pair	NetApp AFF A800	NetApp ONTAP 9.6 P1			
Network connectivity	2	Cisco Nexus 3232C	Cisco NX-OS 7.0(3)I6(1)			

Table 1) Validation environment infrastructure details.

Table 2) Validation environment software version details.

Component	Version
Apache Airflow	1.10.12
Apache Airflow Helm Chart	7.10.1
Cisco NX-OS	7.0(3)I6(1)
Docker	18.09.7
Kubeflow	1.0
Kubernetes	1.17.9
NetApp ONTAP	9.6 P1
NetApp Trident	20.07
NVIDIA DeepOps	20.08.1
NVIDIA DGX OS	4.0.5 (based on Ubuntu 18.04.2 LTS)
Ubuntu	18.04.5 LTS

Support

NetApp does not offer enterprise support for Apache Airflow, Docker, Kubeflow, Kubernetes, or NVIDIA DeepOps. If you are interested in a fully supported solution with capabilities similar to the NetApp AI Control Plane solution, <u>contact NetApp</u> about fully supported AI/ML solutions that NetApp offers jointly with partners.

Kubernetes Deployment

This section describes the tasks that you must complete to deploy a Kubernetes cluster in which to implement the NetApp AI Control Plane solution. If you already have a Kubernetes cluster, then you can skip this section as long as you are running a version of Kubernetes that is supported by Kubeflow and NetApp Trident. For a list of Kubernetes versions that are supported by Kubeflow, see the see the <u>official Kubeflow documentation</u>. For a list of Kubernetes versions that are supported by Trident, see the <u>Trident documentation</u>.

For on-premises Kubernetes deployments that incorporate bare-metal nodes featuring NVIDIA GPU(s), NetApp recommends using NVIDIA's DeepOps Kubernetes deployment tool. This section outlines the deployment of a Kubernetes cluster using DeepOps.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already performed the following tasks:

- 1. You have already configured any bare-metal Kubernetes nodes (for example, an NVIDIA DGX system that is part of an ONTAP AI pod) according to standard configuration instructions.
- 2. You have installed a supported operating system on all Kubernetes master and worker nodes and on a deployment jump host. For a list of operating systems that are supported by DeepOps, see the <u>DeepOps GitHub site</u>.

Use NVIDIA DeepOps to Install and Configure Kubernetes

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the following tasks from a deployment jump host:

- 1. Download NVIDIA DeepOps by following the instructions on the <u>Getting Started page</u> on the NVIDIA DeepOps GitHub site.
- 2. Deploy Kubernetes in your cluster by following the instructions on the <u>Kubernetes Deployment Guide</u> <u>page</u> on the NVIDIA DeepOps GitHub site.
 - Note: For the DeepOps Kubernetes deployment to work, the same user must exist on all Kubernetes master and worker nodes.

If the deployment fails, change the value of kubectl_localhost to false in deepops/config/group_vars/k8s-cluster.yml and repeat step 2. The Copy kubectl binary to ansible host task, which executes only when the value of kubectl_localhost is true, relies on the fetch Ansible module, which has known memory usage issues. These memory usage issues can sometimes cause the task to fail. If the task fails because of a memory issue, then the remainder of the deployment operation does not complete successfully.

If the deployment completes successfully after you have changed the value of kubectl_localhost to false, then you must manually copy the kubectl binary from a Kubernetes master node to the deployment jump host. You can find the location of the kubectl binary on a specific master node by executing the command which kubectl directly on that node.

NetApp Trident Deployment and Configuration

This section describes the tasks that you must complete to install and configure NetApp Trident in your Kubernetes cluster.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already performed the following tasks:

- 1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is supported by Trident. For a list of supported versions, see the <u>Trident documentation</u>.
- 2. You already have a working NetApp storage appliance, software-defined instance, or cloud storage service, that supports the NFS protocol.

Install Trident

To install and configure NetApp Trident in your Kubernetes cluster, perform the following tasks from the deployment jump host:

- 1. Deploy Trident using one of the following methods:
 - a. If you used NVIDIA DeepOps to deploy your Kubernetes cluster, you can also use NVIDIA DeepOps to deploy Trident in your Kubernetes cluster. To deploy Trident with DeepOps, follow the <u>Trident deployment instructions</u> on the NVIDIA DeepOps GitHub site.

- b. If you did not use NVIDIA DeepOps to deploy your Kubernetes cluster or if you simply prefer to deploy Trident manually, you can deploy Trident by following the <u>deployment instructions</u> in the Trident documentation. Be sure to create at least one Trident backend and at least one Kubernetes StorageClass. For more information about backends and StorageClasses, see the <u>Trident documentation</u>.
- Note: If you are deploying the NetApp AI Control Plane solution on an ONTAP AI pod, see the section "Example Trident Backends for ONTAP AI Deployments" for some examples of different Trident backends that you might want to create and the section "Example Kubernetes StorageClasses for ONTAP AI Deployments" for some examples of different Kubernetes StorageClasses that you might want to create.

Example Trident Backends for ONTAP AI Deployments

Before you can use Trident to dynamically provision storage resources within your Kubernetes cluster, you must create one or more Trident backends. The examples that follow represent different types of backends that you might want to create if you are deploying the NetApp AI Control Plane solution on an ONTAP AI pod. For more information about backends, see the <u>Trident documentation</u>.

 NetApp recommends creating a FlexGroup-enabled Trident backend for each data LIF (logical network interface that provides data access) that you want to use on your NetApp AFF system. Due to NFS protocol limitations, a single NFS mount can provide only 1.5GBps to 2GBps of bandwidth. If you need more bandwidth for a job, Trident enables you to add multiple NFS mounts (mounting the same NFS volume multiple times) quickly and easily when you create a Kubernetes pod. For maximum performance, these multiple mounts should be distributed across different data LIFs. You must create a Trident backend for each data LIF that you want to use for these mounts.

The example commands that follow show the creation of two FlexGroup-enabled Trident backends for two different data LIFs that are associated with the same ONTAP storage virtual machine (SVM). These backends use the ontap-nas-flexgroup storage driver. ONTAP supports two main data volume types: FlexVol and FlexGroup. FlexVol volumes are size-limited (as of this writing, the maximum size depends on the specific deployment). FlexGroup volumes, on the other hand, can scale linearly to up to 20PB and 400 billion files, providing a single namespace that greatly simplifies data management. Therefore, FlexGroup volumes are optimal for AI and ML workloads that rely on large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup volumes, you can create Trident backends that use the ontap-nas storage driver instead of the ontap-nas-flexgroup storage driver.

```
$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface1.json
{
  "version": 1,
  "storageDriverName": "ontap-nas-flexgroup",
  "backendName": "ontap-ai-flexgroups-iface1",
  "managementLIF": "10.61.218.100",
  "dataLIF": "192.168.11.11",
  "svm": "ontapai nfs",
  "username": "admin",
  "password": "ontapai"
}
EOF
$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-iface1.json -n trident
+----+
                                                               | STATE
        NAME
                  | STORAGE DRIVER
                                  1
                                               UUID
| VOLUMES |
+-----
          _____
--+----+
| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd |
online |
        0 |
         +----
--+---+
$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface2.json
```

```
{
  "version": 1,
  "storageDriverName": "ontap-nas-flexgroup",
  "backendName": "ontap-ai-flexgroups-iface2",
  "managementLIF": "10.61.218.100",
  "dataLIF": "192.168.12.12",
  "svm": "ontapai_nfs",
  "username": "admin",
  "password": "ontapai"
}
EOF
$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-iface2.json -n trident
--+---+
             | STORAGE DRIVER
       NAME
                                          UUID
                                                      | STATE
                              L VOLUMES |
+-----
             _____+
| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |
online | 0 |
+-----
            _____
--+---+
$ tridentctl get backend -n trident
--+---+
      NAME
                | STORAGE DRIVER |
                                        UUID
                                                      | STATE
1
| VOLUMES |
--+---+
| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd |
        0 |
online |
| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |
online | 0 |
          _____+
+----
____
```

2. NetApp also recommends creating one or more FlexVol-enabled Trident backends. If you use FlexGroup volumes for training dataset storage, you might want to use FlexVol volumes for storing results, output, debug information, and so on. If you want to use FlexVol volumes, you must create one or more FlexVol-enabled Trident backends. The example commands that follow show the creation of a single FlexVol-enabled Trident backend that uses a single data LIF.

```
$ cat << EOF > ./trident-backend-ontap-ai-flexvols.json
{
  "version": 1,
  "storageDriverName": "ontap-nas",
  "backendName": "ontap-ai-flexvols",
  "managementLIF": "10.61.218.100",
  "dataLIF": "192.168.11.11",
  "svm": "ontapai nfs",
  "username": "admin"
  "password": "ontapai"
}
EOF
$ tridentctl create backend -f ./trident-backend-ontap-ai-flexvols.json -n trident
--+---+
                                                 | STATE
      NAME
                 STORAGE DRIVER
                                     UUID
               | VOLUMES |
__+_
| ontap-ai-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-52a69657fabe |
online | 0 |
__+___
$ tridentctl get backend -n trident
--+---+
NAME | STORAGE DRIVER |
                                     UUID
                                                 | STATE
| VOLUMES |
```

```
+-----+
--+----+
| ontap-ai-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-52a69657fabe |
online | 0 |
| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd |
online | 0 |
| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |
online | 0 |
+------+
```

Example Kubernetes StorageClasses for ONTAP AI Deployments

Before you can use Trident to dynamically provision storage resources within your Kubernetes cluster, you must create one or more Kubernetes StorageClasses. The examples that follow represent different types of StorageClasses that you might want to create if you are deploying the NetApp AI Control Plane solution on an ONTAP AI pod. For more information about StorageClasses, see the <u>Trident</u> <u>documentation</u>.

- NetApp recommends creating a separate StorageClass for each FlexGroup-enabled Trident backend that you created in the section "Example Trident Backends for ONTAP AI Deployments," step 1. These granular StorageClasses enable you to add NFS mounts that correspond to specific LIFs (the LIFs that you specified when you created the Trident backends) as a particular backend that is specified in the StorageClass spec file. The example commands that follow show the creation of two StorageClasses that correspond to the two example backends that were created in the section "Example Trident Backends for ONTAP AI Deployments," step 1. The highlighted text shows where the Trident backend is specified in the StorageClass definition file. For more information about StorageClasses, see the Trident documentation.
 - Note: So that a persistent volume isn't deleted when the corresponding PersistentVolumeClaim (PVC) is deleted, the following example uses a reclaimPolicy value of Retain. For more information about the reclaimPolicy field, see the official <u>Kubernetes documentation</u>.

```
$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface1.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: ontap-ai-flexgroups-retain-iface1
provisioner: netapp.io/trident
parameters:
 backendType: "ontap-nas-flexgroup"
  storagePools: "ontap-ai-flexgroups-iface1:.*"
reclaimPolicy: Retain
EOF
$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-iface1.yaml
storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface1 created
$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: ontap-ai-flexgroups-retain-iface2
provisioner: netapp.io/trident
parameters:
 backendType: "ontap-nas-flexgroup"
  storagePools: "ontap-ai-flexgroups-iface2:.*"
reclaimPolicy: Retain
EOF
$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml
storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface2 created
$ kubectl get storageclass
                                   PROVISIONER
                                                       AGE
NAME
ontap-ai-flexgroups-retain-iface1 netapp.io/trident 0m
ontap-ai-flexgroups-retain-iface2 netapp.io/trident Om
```

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident backend that you created in the section "Example Trident Backends for ONTAP AI Deployments,"

step 2. The example commands that follow show the creation of a single StorageClass for FlexVol volumes.

Note: In the following example, a particular backend is not specified in the StorageClass definition file because only one FlexVol-enabled Trident backend was created in the section "Install Trident," step 2. When you use Kubernetes to administer volumes that use this StorageClass, Trident attempts to use any available backend that uses the ontap-nas driver.

```
$ cat << EOF > ./storage-class-ontap-ai-flexvols-retain.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: ontap-ai-flexvols-retain
provisioner: netapp.io/trident
parameters:
 backendType: "ontap-nas"
reclaimPolicy: Retain
EOF
$ kubectl create -f ./storage-class-ontap-ai-flexvols-retain.yaml
storageclass.storage.k8s.io/ontap-ai-flexvols-retain created
$ kubectl get storageclass
NAME
                                      PROVISIONER
                                                             AGE
ontap-ai-flexgroups-retain-iface1 netapp.io/trident
ontap-ai-flexgroups-retain-iface2 netapp.io/trident
                                                             1m
                                                             1m
                                     netapp.io/trident Om
ontap-ai-flexvols-retain
```

3. NetApp also recommends creating a generic StorageClass for FlexGroup volumes. The following example commands show the creation of a single generic StorageClass for FlexGroup volumes. Note that a particular backend is not specified in the StorageClass definition file. Therefore, when you use Kubernetes to administer volumes that use this StorageClass, Trident attempts to use any available backend that uses the ontap-nas-flexgroup driver.

```
$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: ontap-ai-flexgroups-retain
provisioner: netapp.io/trident
parameters:
 backendType: "ontap-nas-flexgroup"
reclaimPolicy: Retain
EOF
$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain.yaml
storageclass.storage.k8s.io/ontap-ai-flexgroups-retain created
$ kubectl get storageclass
                                 PROVISIONER
NAME
                                                     AGE
ontap-ai-flexgroups-retain
                                 netapp.io/trident
                                                     0m
ontap-ai-flexgroups-retain-iface1 netapp.io/trident 2m
ontap-ai-flexgroups-retain-iface2 netapp.io/trident 2m
ontap-ai-flexvols-retain netapp.io/trident 1m
```

Kubeflow Deployment

This section describes the tasks that you must complete to deploy Kubeflow in your Kubernetes cluster.

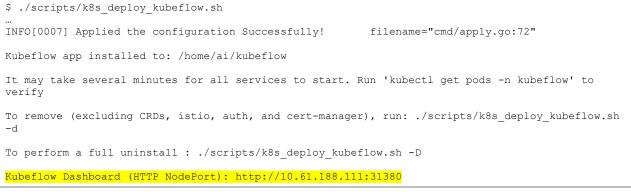
Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already performed the following tasks:

- 1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is supported by Kubeflow. For a list of supported versions, see the <u>official Kubeflow documentation</u>.
- 2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in the section "NetApp Trident Deployment and Configuration."

Set Default Kubernetes StorageClass

Before you deploy Kubeflow, you must designate a default StorageClass within your Kubernetes cluster. The Kubeflow deployment process attempts to provision new persistent volumes using the default StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default StorageClass within your cluster, perform the following task from the deployment jump host. If you have already designated a default StorageClass within your cluster, then you can skip this step.


- 1. Designate one of your existing StorageClasses as the default StorageClass. The example commands that follow show the designation of a StorageClass named ontap-ai-flexvols-retain as the default StorageClass.
 - Note: The ontap-nas-flexgroup Trident backend type has a minimum PVC size of 800GB. By default, Kubeflow attempts to provision PVCs that are smaller than 800GB. Therefore, you should not designate a StorageClass that utilizes the ontap-nas-flexgroup backend type as the default StorageClass for the purposes of Kubeflow deployment.

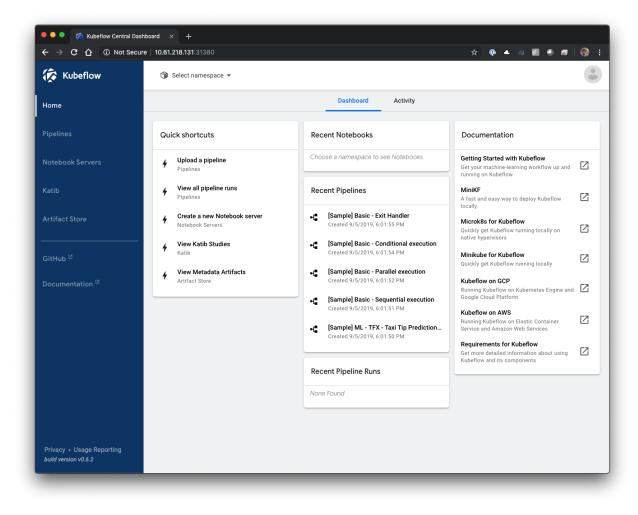
```
$ kubectl get sc
                                        PROVISIONER
                                                                      AGE
NAME
                                        csi.trident.netapp.io
ontap-ai-flexgroups-retain
                                                                      25h
ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io
ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io
                                                                      25h
                                                                      25h
ontap-ai-flexvols-retain
                                         csi.trident.netapp.io
                                                                      3s
 \ kubectl patch storage
class ontap-ai-flexvols-retain -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}
storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched
$ kubectl get sc
                                          PROVISIONER
                                                                       AGE
NAME
ontap-ai-flexgroups-retain
                                          csi.trident.netapp.io
                                                                       2.5h
ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io
                                                                     2.5h
ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io
ontap-ai-flexvols-retain (default) csi.trident.netapp.io
                                                                       25h
                                                                       54s
```

Use NVIDIA DeepOps to Deploy Kubeflow

NetApp recommends using the Kubeflow deployment tool that is provided by NVIDIA DeepOps. To deploy Kubeflow in your Kubernetes cluster using the DeepOps deployment tool, perform the following tasks from the deployment jump host.

- **Note:** Alternatively, you can deploy Kubeflow manually by following the <u>installation instructions</u> in the official Kubeflow documentation
- 1. Deploy Kubeflow in your cluster by following the <u>Kubeflow deployment instructions</u> on the NVIDIA DeepOps GitHub site.
- 2. Note down the Kubeflow Dashboard URL that the DeepOps Kubeflow deployment tool outputs.

3. Confirm that all pods deployed within the Kubeflow namespace show a STATUS of Running and confirm that no components deployed within the namespace are in an error state.


	AGE
	AGE
nod/admission-webbook-bootstran-stateful-set-0 1/1 Punning 0	
Pod/domission webhook poolsitab statetut set 0 1/1 Kumutug 0 5	95s
pod/admission-webhook-deployment-6b89c84c98-vrtbh 1/1 Running 0 9	91s
	98s
	97s
	97s
	96s
11,	95s
	95s
	95s
	95s
	94s
	94s
	93s
	93s
	93s
	95s
	96s
	94s
	93s
	93s
	94s
	94s
	91s
	91s
pod/ml-pipeline-persistenceagent-9b69ddd46-bt9r9 1/1 Running 0 9	90s
pod/ml-pipeline-scheduledworkflow-7b8d756c76-7x56s 1/1 Running 0 9	90s
	90s
pod/ml-pipeline-viewer-controller-deployment-5fdc87f58-b2t9r 1/1 Running 0 9	90s
	91s
pod/notebook-controller-deployment-56b4f59bbf-8bvnr 1/1 Running 0 9	92s
pod/profiles-deployment-6bc745947-mrdkh 2/2 Running 0 9	90s
	92s
	91s
pod/spartakus-volunteer-5fdfddb779-17qkm 1/1 Running 0 9	92s
	92s
	92s
pod/tf-job-operator-79cbfd6dbc-rb58c 1/1 Running 0 9	91s
pod/workflow-controller-db644d554-cwrnb 1/1 Running 0 9	97s
NAME TYPE CLUSTER-IP EXTERNAL-IP	
PORT (S) AGE	
service/admission-webhook-service ClusterIP 10.233.51.169 <none></none>	
443/TCP 97s	
service/application-controller-service ClusterIP 10.233.4.54 <none></none>	
443/TCP 98s	
service/argo-ui NodePort 10.233.47.191 <none></none>	
80:31799/TCP 97s	
service/centraldashboard ClusterIP 10.233.8.36 <none></none>	
80/TCP 97s	
service/jupyter-web-app-service ClusterIP 10.233.1.42 <none></none>	
80/TCP 97s	
service/katib-controller ClusterIP 10.233.25.226 <none></none>	
443/TCP 96s	
service/katib-db ClusterIP 10.233.33.151 <none></none>	
3306/TCP 97s	
service/katib-manager ClusterIP 10.233.46.239 <none></none>	
6789/TCP 96s	
service/katib-manager-rest ClusterIP 10.233.55.32 <none></none>	
80/TCP 96s	
service/katib-suggestion-bayesianoptimization ClusterIP 10.233.49.191 <none></none>	
6789/TCP 95s	
service/katib-suggestion-grid ClusterIP 10.233.9.105 <none></none>	
6789/TCP 95s	
service/katib-suggestion-hyperband ClusterIP 10.233.22.2 <none></none>	
6789/TCP 95s	
service/katib-suggestion-nasrl ClusterIP 10.233.63.73 <none></none>	
6789/TCP 95s	

service/katib-suggestion-random	ClusterIP	10.233.57.210	<none></none>	
6789/TCP 95s service/katib-ui	ClusterIP	10.233.6.116	<none></none>	
80/TCP 96s	CIUSCOLII	10.200.0110		
service/metadata-db 3306/TCP 96s	ClusterIP	10.233.31.2	<none></none>	
service/metadata-service	ClusterIP	10.233.27.104	<none></none>	
8080/TCP 96s service/metadata-ui	ClusterIP	10.233.57.177	<none></none>	
80/TCP 96s service/minio-service	ClusterIP	10.233.44.90	<none></none>	
9000/TCP 94s service/ml-pipeline	ClusterIP	10.233.41.201	<none></none>	
8888/TCP,8887/TCP 94s service/ml-pipeline-tensorboard-ui	ClusterIP	10.233.36.207	<none></none>	
80/TCP 93s	Clusterip	10.233.30.207	<none></none>	
service/ml-pipeline-ui 80/TCP 93s	ClusterIP	10.233.61.150	<none></none>	
service/mysql 3306/TCP 94s	ClusterIP	10.233.55.117	<none></none>	
service/notebook-controller-service	ClusterIP	10.233.10.166	<none></none>	
443/TCP 95s service/profiles-kfam	ClusterIP	10.233.33.79	<none></none>	
8081/TCP 92s service/pytorch-operator	ClusterIP	10.233.37.112	<none></none>	
8443/TCP 95s	ClusterIP	10.233.30.178		
service/seldon-operator-controller-manager-service 443/TCP 92s			<none></none>	
service/tensorboard 9000/TCP 94s	ClusterIP	10.233.58.151	<none></none>	
service/tf-job-dashboard 80/TCP 94s	ClusterIP	10.233.4.17	<none></none>	
service/tf-job-operator	ClusterIP	10.233.60.32	<none></none>	
8443/TCP 94s service/webhook-server-service	ClusterIP	10.233.32.167	<none></none>	
443/TCP 87s				
113/1CI 075				
HU/101 075				
NAME	READY	UP-TO-DATE	AVAILABLE	AGE
	READY 1/1	UP-TO-DATE 1	AVAILABLE 1	AGE 97s
NAME				
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui	1/1	1	1	97s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard	1/1 1/1 1/1	1 1 1	1 1	97s 97s 97s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment	1/1 1/1 1/1 1/1	1 1 1 1	1 1 1	97s 97s 97s 97s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller	1/1 1/1 1/1 1/1 1/1	1 1 1 1	1 1 1 1	97s 97s 97s 97s 96s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db	1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1	1 1 1 1 1	97s 97s 97s 97s 96s 97s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager	1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1	1 1 1 1 1 1 1	97s 97s 97s 97s 96s 97s 96s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	97s 97s 97s 97s 96s 97s 96s 96s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimizati	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1	1 1 1 1 1 1 1	97s 97s 97s 97s 96s 97s 96s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimizati	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	97s 97s 97s 97s 96s 97s 96s 96s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-grid	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0n 1/1 1/1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	97s 97s 97s 96s 96s 96s 95s 95s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-grid deployment.apps/katib-suggestion-hyperband	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	97s 97s 97s 96s 96s 96s 95s 95s 95s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-grid deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	978 978 978 968 978 968 968 958 958 958 958
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-grid deployment.apps/katib-suggestion-nagrid deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	97s 97s 97s 96s 96s 96s 95s 95s 95s 95s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-pression deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 965 955 955 955 955 955 955 95
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-grid deployment.apps/katib-suggestion-nagrid deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1	97s 97s 97s 96s 96s 96s 95s 95s 95s 95s
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-prid deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/katib-ui	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 965 955 955 955 955 955 955 95
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-pyerband deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-deployment	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 955 955 955 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-pyerband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 975 965 965 955 955 955 955 965 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/metadata-ui	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 965 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-pyerband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/minio	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 965 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-pyerband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/minio deployment.apps/minio	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 955 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-pyerband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/minio	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 965 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/centraldashboard deployment.apps/katib-controller deployment.apps/katib-controller deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimizatione deployment.apps/katib-suggestion-bayesianoptimizatione deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/metadata-db deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/minio deployment.apps/minio deployment.apps/ml-pipeline	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 955 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimizatione deployment.apps/katib-suggestion-bayesianoptimizatione deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/ml-pipeline deployment.apps/ml-pipeline-persistenceagent deployment.apps/ml-pipeline-ui	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 965 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/ml-pipeline deployment.apps/ml-pipeline-persistenceagent deployment.apps/ml-pipeline-controller-deplov	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 955 955 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-pyerband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/ml-pipeline deployment.apps/ml-pipeline-controller-deplo deployment.apps/ml-pipeline-viewer-controller-deplo deployment.apps/ml-pipeline-viewer-controller-deplo	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 965 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/ml-pipeline deployment.apps/ml-pipeline-persistenceagent deployment.apps/ml-pipeline-controller-deplov	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 955 955 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-pyerband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/ml-pipeline deployment.apps/ml-pipeline-controller-deplo deployment.apps/ml-pipeline-viewer-controller-deplo deployment.apps/ml-pipeline-viewer-controller-deplo	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 955 965 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-controller deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/ml-pipeline-persistenceagent deployment.apps/ml-pipeline-controller-deploy deployment.apps/ml-pipeline-viewer-controller-deploy deployment.apps/ml-pipeline-viewer-controller-deploy deployment.apps/motebook-controller-deployment deployment.apps/motebook-controller-deployment deployment.apps/motebook-controller-deployment	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 975 965 955 955 955 965 965 965 965 945 945 945 933 935 935 935 945 935 935 945
NAME deployment.apps/admission-webhook-deployment deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-controller deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/minio deployment.apps/minio deployment.apps/minio deployment.apps/minepline-persistenceagent deployment.apps/ml-pipeline-controller-deplo deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-ui deployment.apps/ml-pipeline-deployment deployment.apps/profiles-deployment deployment.apps/profiles-deployment deployment.apps/pytorch-operator	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 975 965 955 955 955 955 965 965 965 965 945 935 935 935 935 935 935 935 935 935 93
<pre>NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/metadata-db deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/ml-pipeline deployment.apps/ml-pipeline deployment.apps/ml-pipeline-controller-deploy deployment.apps/ml-pipeline-viewer-controller-deploy deployment.apps/ml-pipeline-viewer-controller-deploy deployment.apps/pysql deployment.apps/pysql deployment.apps/pysorta-operator deployment.apps/pysortakus-volunteer</pre>	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 975 965 955 955 955 955 965 945 945 935 935 945 935 935 945 935 945 935 945 935 945 935 945
<pre>NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/metadata-db deployment.apps/metadata-deployment deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/ml-pipeline deployment.apps/ml-pipeline deployment.apps/ml-pipeline-controller-deploy deployment.apps/ml-pipeline-viewer-controller-deploy deployment.apps/pysql deployment.apps/pysql deployment.apps/pysql deployment.apps/pysql deployment.apps/pysql deployment.apps/pytorch-operator deployment.apps/pytorch-operator deployment.apps/tensorboard</pre>	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 965 965 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/centraldashboard deployment.apps/centraldashboard deployment.apps/katib-controller deployment.apps/katib-controller deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/ml-pipeline deployment.apps/ml-pipeline-controller-deplo deployment.apps/ml-pipeline-viewer-controller-deplo deployment.apps/msyql deployment.apps/msyql deployment.apps/pytorch-operator deployment.apps/pytorchoperator deployment.apps/pytensorboard deployment.apps/tensorboard	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 975 965 955 955 955 955 955 955 955 955 95
<pre>NAME deployment.apps/admission-webhook-deployment deployment.apps/argo-ui deployment.apps/centraldashboard deployment.apps/jupyter-web-app-deployment deployment.apps/katib-controller deployment.apps/katib-db deployment.apps/katib-manager deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-nasrl deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/metadata-db deployment.apps/metadata-deployment deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/ml-pipeline deployment.apps/ml-pipeline deployment.apps/ml-pipeline-controller-deploy deployment.apps/ml-pipeline-viewer-controller-deploy deployment.apps/pysql deployment.apps/pysql deployment.apps/pysql deployment.apps/pysql deployment.apps/pysql deployment.apps/pytorch-operator deployment.apps/pytorch-operator deployment.apps/tensorboard</pre>	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 965 965 955 955 955 965 965 965 965 96
NAME deployment.apps/admission-webhook-deployment deployment.apps/centraldashboard deployment.apps/centraldashboard deployment.apps/katib-controller deployment.apps/katib-controller deployment.apps/katib-manager deployment.apps/katib-manager-rest deployment.apps/katib-suggestion-bayesianoptimization deployment.apps/katib-suggestion-hyperband deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-suggestion-random deployment.apps/katib-ui deployment.apps/katib-ui deployment.apps/metadata-db deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/metadata-ui deployment.apps/minio deployment.apps/ml-pipeline deployment.apps/ml-pipeline-controller-deplo deployment.apps/ml-pipeline-viewer-controller-deplo deployment.apps/msyql deployment.apps/msyql deployment.apps/pytorch-operator deployment.apps/pytorchoperator deployment.apps/pytensorboard deployment.apps/tensorboard	1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1	975 975 975 975 965 955 955 955 955 955 955 955 955 95

NAME	DESIRED	CURRENT	READY
AGE replicaset.apps/admission-webhook-deployment-6b89c84c98	1	1	1
97s replicaset.apps/argo-ui-5dcf5d8b4f	1	1	1
97s replicaset.apps/centraldashboard-cf4874ddc	1	1	1
97s replicaset.apps/jupyter-web-app-deployment-685b455447 97s	1	1	1
replicaset.apps/katib-controller-88c97d85c 96s	1	1	1
replicaset.apps/katib-db-8598468fd8 97s	1	1	1
replicaset.apps/katib-manager-574c8c67f9 96s	1	1	1
replicaset.apps/katib-manager-rest-778857c989 96s	1	1	1
replicaset.apps/katib-suggestion-bayesianoptimization-65df4d7455 95s	1	1	1
replicaset.apps/katib-suggestion-grid-56bf69f597 95s	1	1	1
replicaset.apps/katib-suggestion-hyperband-7777b76cb9 95s	1	1	1
replicaset.apps/katib-suggestion-nasrl-77f6f9458c 95s	1	1	1
replicaset.apps/katib-suggestion-random-77b88b5c79 95s	1	1	1
replicaset.apps/katib-ui-7587c5b967 96s	1	1	1
replicaset.apps/metadata-db-5dd459cc 96s	1	1	1
replicaset.apps/metadata-deployment-6cf77db994 96s	3	3	3
replicaset.apps/metadata-ui-78f5b59b56 96s	1	1	1
replicaset.apps/minio-758b769d67 93s	1	1	1
replicaset.apps/ml-pipeline-5875b9db95 93s	1	1	1
replicaset.apps/ml-pipeline-persistenceagent-9b69ddd46 92s	1	1	1
replicaset.apps/ml-pipeline-scheduledworkflow-7b8d756c76 91s	1	1	1
replicaset.apps/ml-pipeline-ui-79ffd9c76 91s	1	1	1
replicaset.apps/ml-pipeline-viewer-controller-deployment-5fdc87f58 91s	1	1	1
replicaset.apps/mysql-657f87857d 92s	1	1	1
replicaset.apps/notebook-controller-deployment-56b4f59bbf 94s	1	1	1
replicaset.apps/profiles-deployment-6bc745947 91s	1	1	1
replicaset.apps/pytorch-operator-77c97f4879 94s	1	1	1
replicaset.apps/spartakus-volunteer-5fdfddb779 94s	1	1	1
replicaset.apps/tensorboard-6544748d94 93s	1	1	1
replicaset.apps/tf-job-dashboard-56f79c59dd 93s	1	1	1
replicaset.apps/tf-job-operator-79cbfd6dbc 93s			
replicaset.apps/workflow-controller-db644d554 97s	1	1	1
NAMEREADYstatefulset.apps/admission-webhook-bootstrap-stateful-set1/1statefulset.apps/application-controller-stateful-set1/1	AGE 97s 98s		

statefulset.apps/metacont statefulset.apps/seldon-o	roller perator-controller-manager	1/1 1/1	98s 92s	
\$ kubectl get pvc -n kube	flow			
NAME STATUS	VOLUME		CAPACITY	ACCESS MODES
STORAGECLASS	AGE			
katib-mysql Bound	pvc-b07f293e-d028-11e9-9b9d-00505	5681a82d	10Gi	RWO
ontap-ai-flexvols-retain	27m			
metadata-mysql Bound	pvc-b0f3f032-d028-11e9-9b9d-00505	5681a82d	10Gi	RWO
ontap-ai-flexvols-retain	27m			
minio-pv-claim Bound	pvc-b22727ee-d028-11e9-9b9d-00505	5681a82d	20Gi	RWO
ontap-ai-flexvols-retain	27m			
mysql-pv-claim Bound	pvc-b2429afd-d028-11e9-9b9d-00505	5681a82d	20Gi	RWO
ontap-ai-flexvols-retain	27m			

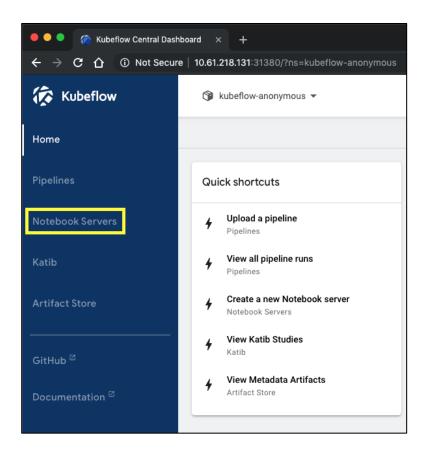
- 4. In your web browser, access the Kubeflow central dashboard by navigating to the URL that you noted down in step 2.
 - Note: The default username is admin@kubeflow.org, and the default password is 12341234. To create additional users, follow the instructions in the <u>official Kubeflow documentation</u>.

Example Kubeflow Operations and Tasks

This section includes examples of various operations and tasks that you may want to perform using Kubeflow.

Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data scientist workspaces. To provision a new Jupyter Notebook server with Kubeflow, perform the following tasks. For more information about Jupyter Notebooks within the Kubeflow context, see the <u>official Kubeflow</u> <u>documentation</u>.


1. **Optional:** If there are existing volumes on your NetApp storage system that you want to mount on the new Jupyter Notebook server, but that are not tied to PersistentVolumeClaims (PVCs) in the namespace that the new server is going to be created in (see step 4 below), then you must import these volumes into that namespace. Use the Trident volume import functionality to import these volumes.

The example commands that follow show the importing of an existing volume named pb_fg_all into the kubeflow-anonymous namespace. These commands create a PVC in the kubeflow-anonymous namespace that is tied to the volume on the NetApp storage system. For more information about PVCs, see the <u>official Kubernetes documentation</u>. For more information about the volume import functionality, see the <u>Trident documentation</u>. For a detailed example showing the importing of a volume using Trident, see the section "0."

Note: The volume is imported in the kubeflow-anonymous namespace because that is the namespace that the new Jupyter Notebook server is created in in step 4. To mount this existing volume on the new Jupyter Notebook server using Kubeflow, a PVC must exist for the volume in the same namespace.

<pre>\$ cat << EOF > ./pvc-import-pb_fg_all-kubeflow- kind: PersistentVolumeClaim apiVersion: v1 metadata: name: pb-fg-all namespace: kubeflow-anonymous</pre>	anonymous.yaml			
spec:				
accessModes:				
- ReadOnlyMany				
storageClassName: ontap-ai-flexgroups-retain				
EOF				
<pre>\$ tridentctl import volume ontap-ai-flexgroups-</pre>	iface1 pb_fg_all	-f ./pvc-ir	mport-pb_fg_all	
kubeflow-anonymous.yaml -n trident				
++				+
NAME S BACKEND UUID STATE MANAGED	IZE STOR			
++			+	+
pvc-led071be-d5a6-11e9-8278-00505681feb6 10 12f4f8fa-0500-4710-a023-d9b47e86a2ec online	TiB ontap-ai-f true	5 1		
++++++	+			
\$ kubectl get pvc -n <mark>kubeflow-anonymous</mark> NAME STATUS VOLUME STORAGECLASS AGE		CAPACITY	ACCESS MODES	
pb-fg-all Bound pvc-1ed071be-d5a6-11e9-827 ai-flexgroups-retain 14s	8-00505681feb6	10Ti	ROX	ontap-

2. From the Kubeflow central dashboard, click Notebook Servers in the main menu to navigate to the Jupyter Notebook server administration page.

3. Click New Server to provision a new Jupyter Notebook server.

🔍 🔍 🧶 🏀 🏀 Kubeflow C	entral Dashboard	× +					
	Not Secure 10.	61.218.131:31	380/_/jupyter/	?ns=kubeflow-a	ino 🕁 🐢	▲ 🛋 ど 🍳	🖬 🍥 🗄
😑 🔅 Kubeflow	🅥 kubeflo	w-anonymous	•				•
Notebook Server	S					+ N	EW SERVER
Status	Name	Age	Image	CPU	Memory	Volumes	

4. Give your new server a name, choose the Docker image that you want your server to be based on, and specify the amount of CPU and RAM to be reserved by your server. If the Namespace field is blank, use the Select Namespace menu in the page header to choose a namespace. The Namespace field is then auto-populated with the chosen namespace.

In the following example, the kubeflow-anonymous namespace is chosen. In addition, the default values for Docker image, CPU, and RAM are accepted.

🛑 🔍 🌻 🌾 Kubeflow Central Dashboar	$rd \times +$	
\leftrightarrow \rightarrow \mathbf{C} $\mathbf{\hat{C}}$ A Not Secure 1	10.61.218.131:31380/_/jupyter/?ns=kubeflow-anonym 🏫 🕼 🔺 💷 🗐 💿 着	• I 🚳 🗄
🗮 🕼 Kubeflow 🕥 kubef	flow-anonymous 🔻	•
🗏 Name		
Specify the name of the Notebook S	Server and the Namespace it will belong to.	
Name	Namespace	
mike	kubeflow-anonymous	
🖶 Image		
-	h a baseline deployment and typical ML packages.	
A starter Jupyter Docker Image with	h a baseline deployment and typical ML packages. nsorflow-1.13.1-notebook-cpu:v0.5.0	•
A starter Jupyter Docker Image with Custom Image Image gcr.io/kubeflow-images-public/ter		•
A starter Jupyter Docker Image with Custom Image gcr.io/kubeflow-images-public/ter CPU / RAM		• Dose
A starter Jupyter Docker Image with Custom Image gcr.io/kubeflow-images-public/ter CPU / RAM Specify the total amount of CPU and	nsorflow-1.13.1-notebook-cpu:v0.5.0	• Dose

5. Specify the workspace volume details. If you choose to create a new volume, then that volume or PVC is provisioned using the default StorageClass. Because a StorageClass utilizing Trident was designated as the default StorageClass in the section "Set Default Kubernetes StorageClass," the volume or PVC is provisioned with Trident. This volume is automatically mounted as the default workspace within the Jupyter Notebook Server container. Any notebooks that a user creates on the server that are not saved to a separate data volume are automatically saved to this workspace volume. Therefore, the notebooks are persistent across reboots.

😐 Workspace V	olume			
Configure the Volur	me to be mounted as your perso	onal Workspace		
🗌 Don't use Persis	tent Storage for User's home			
Туре	Name	Size	Mode	Mount Point
New	workspace-mike	10Gi	ReadWriteOnce	/home/jovyan

6. Add data volumes. The following example specifies the existing volume that was imported by the example commands in step 1 and accepts the default mount point.

📾 Data Volume	s			
Configure the Volu	mes to be mounted as	your Datasets.		
+ ADD VOLUME				
Туре	Name	Size	Mode	Mount Point
Existing	pb-fg-all	10Gi	ReadWriteOnce	/home/jovyan/data-vol-1

7. **Optional:** Request that the desired number of GPUs be allocated to your notebook server. In the following example, one GPU is requested.

幸 Configurations Extra layers of configurations that will be applied to the new Notebook. (e.g. Insert credentials as Secrets, set Environme Variables.)	ent
Configurations	•
 Extra Resources Specify extra resources that might be needed in the Notebook Server. Enable Shared Memory 	
Extra Resources * {"nvidia.com/gpu": 1} Extra Resources available in the cluster (ex. NVIDIA GPUs)	
LAUNCH CANCEL	

- 8. Click Launch to provision your new notebook server.
- 9. Wait for your notebook server to be fully provisioned. This can take several minutes if you have never provisioned a server using the Docker image that you specified in step 4 because the image needs to be downloaded. When your server has been fully provisioned, you see a green checkmark graphic in the Status column on the Jupyter Notebook server administration page.

	🋜 Kube	flow Central Dash	board ×											
$\leftrightarrow \rightarrow G$	û	A Not Secure	e 10.61.218	3.131 :31380)/_/jupyter/	/?ns=kube	eflow-anor	ym 🏠	•	•	>	0	- 6) i
= 🔅	Kube	flow 🍞 k	ubeflow-ano	nymous 👻										•
Noteb	ook S	Servers									+	NEW S	ERVER	
Status	Name	Age	Image				CF	U Memory	Volumes	3				
0	mike	12 mins ago	tensorflow-	1.13.1-note	book-cpu:v	/0.5.0	0.	5 1.0Gi	:		CON	NECT	Î	

- 10. Click Connect to connect to your new server's web interface.
- 11. Confirm that the dataset volume that was specified in step 6 is mounted on the server. Note that this volume is mounted within the default workspace by default. From the perspective of the user, this is just another folder within the workspace. The user, who is likely a data scientist and not an infrastructure expert, does not need to possess any storage expertise in order to use this volume.

🔹 🔍 🧑 Kube	flow Central Dashb	oard x	Home		× +						
\leftrightarrow \rightarrow C Δ	Not Secure	10.61.218.13	1 :31380/noteb	ook/kubeflow	-anonymo	us/ 🕁	Ф 🔺			a	🚳 :
بر 💭	ıpyter								Quit		
Files	Running	Clusters									
Select it	ems to perform acti	ons on them.						Upload	New -	C	
0	- b /					Name 🕹	Last N	Adified	File size		
	🗅 data-vol-1						a	day ago			

🔍 🔍 🌾 Kubeflow Central Dashboard 🛛 📿 data-vol-1/ 💦 🔸 🕂					
← → C ☆ O Not Secure 10.61.218.131:31380/notebook/kubeflow-anonymous/	🖈	op 🔺 🛋 📱	1 🔍 🗖	1 🚳	
💭 Jupyter			Quit		
Files Running Clusters					
Select items to perform actions on them.		Upload	New - 2		
□ 0 👻 🖬 / data-vol-1	Name 🕹	Last Modified	File size		
۵.		seconds ago			
□ □ blas_folder		2 months ago			
		2 months ago			
Container		3 months ago			
□ □ dataset		5 hours ago			
□ □ fio_test		3 months ago			
parabricks		7 months ago			
□ □ banking.csv		a month ago	4.88 MB		

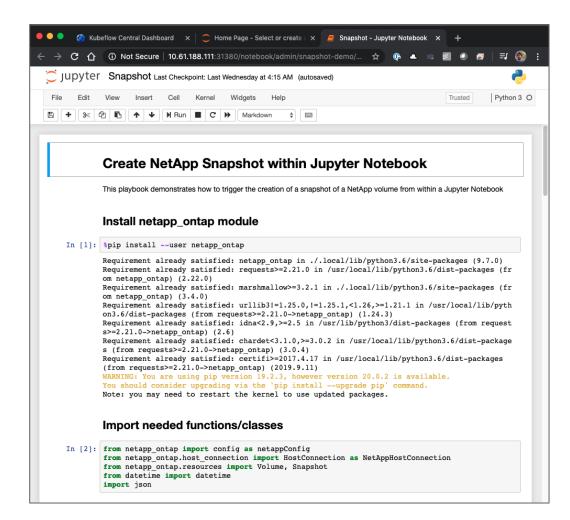
- 12. Open a terminal and, assuming that a new volume was requested in step 5, execute df -h to confirm that a new Trident-provisioned persistent volume is mounted as the default workspace.
 - Note: The default workspace directory is the base directory that you are presented with when you first access the server's web interface. Therefore, any artifacts that the user creates using the web interface are stored on this Trident-provisioned persistent volume.

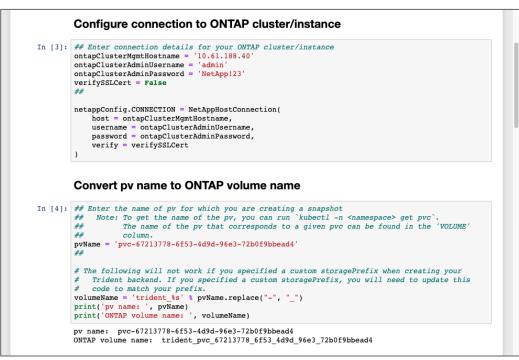
• • • Kubeflow Central Dashboard × C data-vol-1/ × +					
\leftrightarrow \rightarrow C Λ O Not Secure 10.61.218.131:31380/notebook/kubeflow-anonymous/	. 🖈	op 🔺 💿		ः ∣ (🔊 :
💭 jupyter			Quit		
Files Running Clusters					
Select items to perform actions on them.		Upload	New -	C	
0 v b/ data-vol-1	Name 🕹	Notebook: Python 2	e		
۵		Python 3			
blas_folder		Other:			
		Text File			
Container		Folder			
dataset		5 hours ago			
□ □ fio_test		3 months ago			
parabricks		7 months ago			
D banking.csv		a month ago	4.88 M	З	

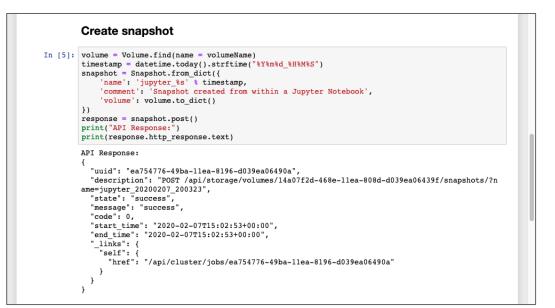
→ C A Not Secure 10.61.218.131:31380/notebook/kubeflow-anonymous	/miko/t	~	<u> </u>	0	_	
	s/IIIKe/t	. ж	ф. —	•	<u></u>	1
😇 jupyter						
S , 1, 1						
\$ df -h						
Filesystem	Size	Used	Avail			
Use% Mounted on						
overlay	439G	34G	382G			
9% / tmpfs	64M	0	64M			
0% /dev	64M	U	64M			
tmpfs	252G	0	252G			
0% /sys/fs/cgroup	2526	0	2526			
/dev/sda2	439G	34G	382G			
9% /etc/hosts						
192.168.11.11:/trident pvc 3dcfe7e5 d5a9 11e9 9b9d 00505681a82d	10G	320K	10G			
1% /home/jovyan						
tmpfs	252G	0	252G			
0% /dev/shm						
192.168.11.11:/pb_fg_all	10T	10T	47G			
100% /home/jovyan/data-vol-1						
tmpfs	252G	12K	252G			
1% /run/secrets/kubernetes.io/serviceaccount						
tmpfs	252G	12K	252G			
1% /proc/driver/nvidia		4 . 010	510			
tmpfs	51G	4.9M	51G			
1% /run/nvidia-persistenced/socket udev	252G	0	252G			
0% /dev/nvidia5	2526	0	292G			
tmpfs	252G	0	252G			
0% /proc/acpi	2020		2020			
tmpfs	252G	0	252G			
0% /proc/scsi						
tmpfs	252G	0	252G			
0% /sys/firmware						

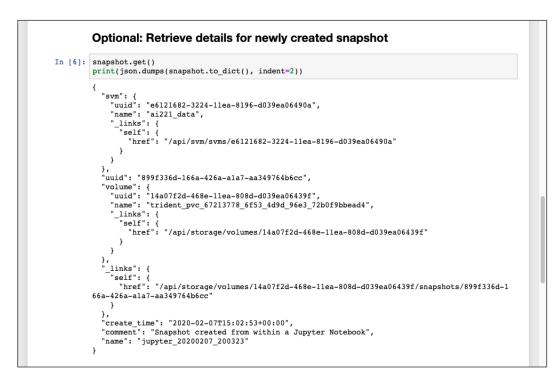
13. Using the terminal, run nvidia-smi to confirm that the correct number of GPUs were allocated to the notebook server. In the following example, one GPU has been allocated to the notebook server as requested in step 7.

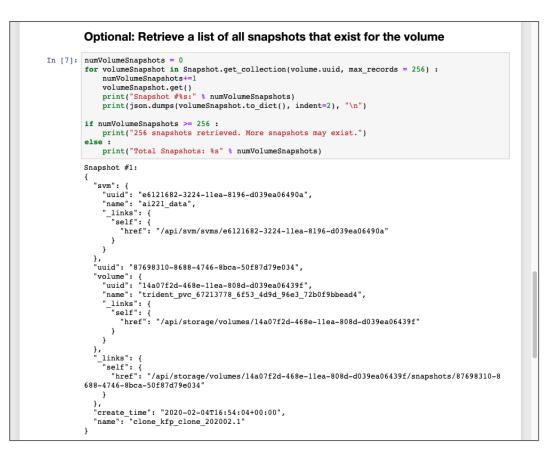
\rightarrow C	ን ሱ	A Not	Secure 1	0.61.218	131 :31380/	notebook/kube	flow-a	anonymous/n	nike/t	☆ 🗣	A	<u>ا</u> ا	0	र । 🚳
💭 jup	byter													
-														
\$ nvid Fri Se		3:52:1	5 2019											
+ NVID	IA-SMI	410.1	04 I	Driver	Version:	410.104	ст	UDA Versio	on: N/A	+ 				
GPU Fan	Name Temp	Perf	Persiste Pwr:Usag	ence-M ge/Cap	Bus-Id	Disp Memory-Usa	.A ge	Volatile GPU-Util	Uncorr Comput	ECC E M.				
0	Tesla		SXM2	On	0000000	0:86:00.0 0 iB / 32480M	ff			0 ault				
+				+			+·			+				
+ Proc GPU	esses:	PID							GPU Me Usage	emory				
====== No	====== runnin		esses fou											


Create a Snapshot of an ONTAP Volume from Within a Jupyter Notebook


To trigger the creation of a snapshot, from within a Jupyter Notebook, of a NetApp ONTAP volume that is mounted in the Jupyter Notebook Server's workspace, perform the following tasks. This operation takes advantage of the NetApp ONTAP REST APIs and the NetApp ONTAP Python module. For more information about the REST APIs and the Python module, see the <u>NetApp support site</u>. Note that tasks in this section only work for volumes that reside on ONTAP storage systems or software-defined instances.

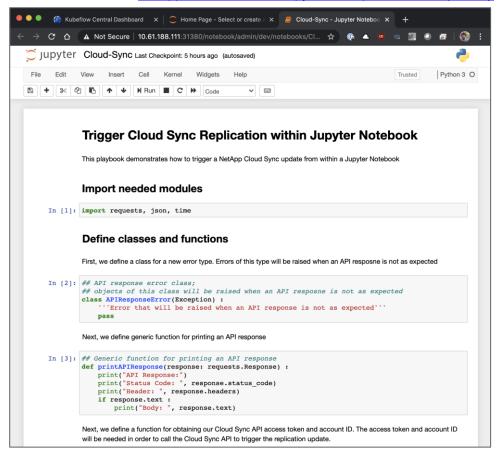

- Connect to a Jupyter Notebook server's web interface. See the section "Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use" for instructions on how to provision a Jupyter Notebook Server.
- 2. Open an existing Python 3 notebook or create a new Python 3 notebook. The following example shows the creation of a new Python 3 notebook.


••• •	Home	× +						
\leftrightarrow \rightarrow C $+$	🕜 🛈 Not Secur	e 192.168.245.20	02:31380/note	\$ 🖗	•	I 0	a (🔊 :
💭 Jupyte	r							Quit
Files Run	ning Clusters	n				Un	load Ne	w • 2
				Ν	lame 🕹	Notebook: Python 3		:e
datase	et-vol					Other:		
🗆 🛢 Snaps	shot_backup.ipynb				-	Text File Folder Terminal		kB
						Terminal		_


 Add the following content to the Notebook, update variable values as stated in the comments, and then run all cells. Alternatively, an example Jupyter Notebook containing this content can be downloaded from <u>NetApp's Kubeflow and Jupyter Examples GitHub repository</u>.

Trigger a Cloud Sync Replication Update from Within a Jupyter Notebook

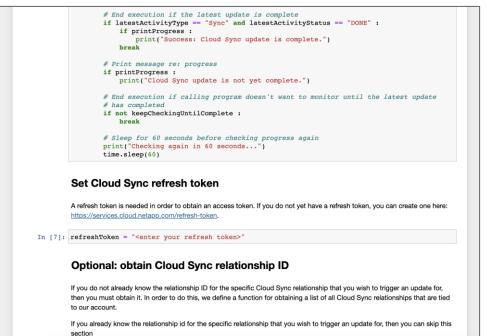
From directly within a Jupyter Notebook, you can trigger the replication of data to and from a variety of file and object storage platforms by using NetApp Cloud Sync replication technology. Potential use cases include:

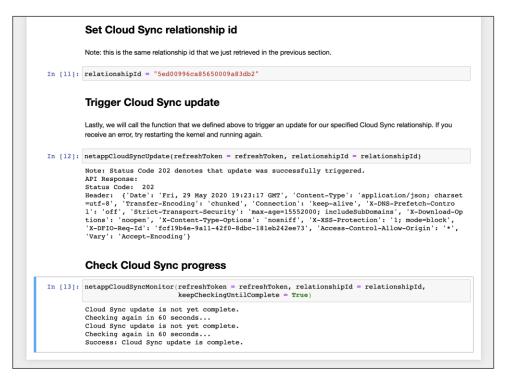

- Replicating newly acquired sensor data gathered at the edge back to the core data center or to the cloud to be used for AI/ML model training or retraining.
- Replicating a newly trained or newly-updated model from the core data center to the edge or to the cloud to be deployed as part of an inferencing application.
- Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the training of an AI/ML model.
- Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML training environment for use in the training of an AI/ML model.
- Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage.
- Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance AI/ML training environment for use in the training of an AI/ML model.

To trigger a Cloud Sync replication update from within a Jupyter Notebook, perform the following tasks:

- **Note:** Before you perform the exercises that are outlined in this section, we assume that you have already initiated the Cloud Sync relationship that you wish to trigger an update for. To initiate a relationship, visit <u>cloudsync.netapp.com</u>.
- Connect to a Jupyter Notebook server's web interface. For instructions on how to provision a Jupyter Notebook server, see the section "Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use.".
- 2. Open an existing Python 3 notebook or create a new Python 3 notebook. The following example shows the creation of a new Python 3 notebook.

••• Home × +	
← → C 🏠 ① Not Secure 192.168.245.202:31380/note ☆ 🕼 🔺 💷	🗐 🔍 🗖 🎯 🗄
💭 jupyter	Quit
Files Running Clusters	
Select items to perform actions on them.	Upload New - 2
□ 0 ► / Name ◆	Python 3
dataset-vol	Other:
Snapshot_backup.ipynb	Text File kB
	Folder
	Terminal


3. Add the following content to the Notebook, update variable values as stated in the instructions, and then run all cells. Alternatively, an example Jupyter Notebook containing this content can be downloaded from NetApp's Kubeflow and Jupyter Examples GitHub repository.



Create a Kubeflow Pipeline to Execute an End-to-End AI Training Workflow with Built-in Traceability and Versioning

To define and execute a new Kubeflow Pipeline that takes advantage of NetApp Snapshot technology in order to integrate rapid and efficient dataset and model versioning and traceability into an end-to-end AI/ML model training workflow, perform the following tasks. For more information about Kubeflow

pipelines, see the <u>official Kubeflow documentation</u>. Note that the example pipeline that is shown in this section only works with volumes that reside on ONTAP storage systems or software-defined instances.

 Create a Kubernetes secret containing the username and password of the cluster admin account for the ONTAP cluster on which your volumes reside. This secret must be created in the kubeflow namespace because this is the namespace that pipelines are executed in. Note that you must replace username and password with your username and password when executing these commands, and you must use the output of the base64 commands (see highlighted text) in your secret definition accordingly.

```
$ echo -n 'username' | base64
dXNlcm5hbWU=
$ echo -n 'password' | base64
cGFzc3dvcm
$ cat << EOF > ./secret-ontap-cluster-mgmt-account.yaml
apiVersion: v1
kind: Secret
metadata:
 name: ontap-cluster-mgmt-account
 namespace: kubeflow
data:
 username: dXNlcm5hbWU=
 password: cGFzc3dvcmQ=
EOF
$ kubectl create -f ./secret-ontap-cluster-mgmt-account.yaml
secret/ontap-cluster-mgmt-account created
```

2. If the volume containing the data that you plan to use to train your model is not tied to a PVC in the kubeflow namespace, then you must import this volume into that namespace. Use the Trident volume import functionality to import this volume. The volume must be imported into the kubeflow namespace because this is the namespace that pipelines are executed in.

If your dataset volume is already tied to a PVC in the kubeflow namespace, then you can skip this step. If you do not yet have a dataset volume, then you must provision one and then transfer your data to it. See the section "Provision a New Volume" for an example showing how to provision a new volume with Trident.

The example commands that follow show the importing of an existing FlexVol volume, named dataset_vol, into the kubeflow namespace. For more information about PVCs, see the <u>official</u> <u>Kubernetes documentation</u>. For more information about the volume import functionality, see the <u>Trident documentation</u>. For a detailed example showing the importing of a volume using Trident, see the section "Import an Existing Volume."

```
$ cat << EOF > ./pvc-import-dataset-vol-kubeflow.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: dataset-vol
 namespace: kubeflow
spec:
 accessModes:
  - ReadWriteManv
 storageClassName: ontap-ai-flexvols-retain
EOF
$ tridentctl import volume ontap-ai-flexvols dataset vol -f ./pvc-import-dataset-vol-
kubeflow.yaml -n trident
+------
-----+
          NAME
                      | SIZE |
                                   STORAGE CLASS | PROTOCOL |
          | STATE | MANAGED |
BACKEND UUID
   -----
                         _____+
| pvc-3c70ad14-d88f-11e9-b5e2-00505681f3d9 | 10 TiB | ontap-ai-flexvols-retain | file
                                                       2942d386-afcf-462e-bf89-1d2aa3376a7b | online | true
                                 _____
-----+
```

```
$ kubectl get pvc -n kubeflow
```

NAME CAPACITY ACCES	S MODES STORAGECLASS	STATUS	VOLUME AGE	
imagenet-benchma	rk-job-gblgq-kfpresults	Bound	pvc-a4e32212-d65c-11e9-a043-00505681a82d	1Gi
RWX c	ntap-ai-flexvols-retain	2d19h		
katib-mysql		Bound	pvc-b07f293e-d028-11e9-9b9d-00505681a82d	
10Gi RWO	ontap-ai-flexvo	ls-retain	10d	
dataset-vol		Bound	pvc-43b12235-f32e-4dc4-a7b8-88e90d935a12	
10Ti ROX	ontap-ai-flexvo	ls-retain	8s	
metadata-mysql		Bound	pvc-b0f3f032-d028-11e9-9b9d-00505681a82d	
10Gi RWO	ontap-ai-flexvo	ls-retain	10d	
minio-pv-claim		Bound	pvc-b22727ee-d028-11e9-9b9d-00505681a82d	
20Gi RWO	ontap-ai-flexvo	ls-retain	10d	
mysql-pv-claim		Bound	pvc-b2429afd-d028-11e9-9b9d-00505681a82d	
20Gi RWO	ontap-ai-flexvo	ls-retain	10d	

3. If the volume on which you wish to store your trained model is not tied to a PVC in the kubeflow namespace, then you must import this volume into that namespace. Use the Trident volume import functionality to import this volume. The volume must be imported into the kubeflow namespace because this is the namespace that pipelines are executed in.

If your trained model volume is already tied to a PVC in the kubeflow namespace, then you can skip this step. If you do not yet have a trained model volume, then you must provision one. See the section "Provision a New Volume" for an example showing how to provision a new volume with Trident.

The example commands that follow show the importing of an existing FlexVol volume, named kfp_model_vol, into the kubeflow namespace. For more information about PVCs, see the <u>official</u> <u>Kubernetes documentation</u>. For more information about the volume import functionality, see the <u>Trident documentation</u>. For a detailed example showing the importing of a volume using Trident, see the section "Import an Existing Volume."

```
$ cat << EOF > ./pvc-import-dataset-vol-kubeflow.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: kfp-model-vol
 namespace: kubeflow
spec:
 accessModes:
   - ReadWriteManv
 storageClassName: ontap-ai-flexvols-retain
EOF
$ tridentctl import volume ontap-ai-flexvols kfp model vol -f ./pvc-import-kfp-model-vol-
kubeflow.yaml -n trident
----+
           NAME |
| STATE | MANAGED |
                                              STORAGE CLASS
                             | SIZE |
                                                               | PROTOCOL |
BACKEND UUID
-----+
| pvc-3c70ad14-d88f-11e9-b5e2-00505681f3d9 | 10 TiB | ontap-ai-flexvols-retain | file
                                                                         2942d386-afcf-462e-bf89-1d2aa3376a7b | online | true |
_____
$ kubectl get pvc -n kubeflow
                                 STATUS VOLUME
NAME
                    STORAGECLASS
CAPACITY ACCESS MODES
                                         AGE
imagenet-benchmark-job-gblgq-kfpresults Bound pvc-a4e32212-d65c-11e9-a043-00505681a82d 1Gi
RWX ontap-ai-flexvols-retain 2d19h
katib-mysql Bound pvc-b07f293e-d028-11e9-9b9d-00505681a82d
10Gi
        RWO
                   ontap-ai-flexvols-retain 10d

    IUGI
    Image: second condition

    kfp-model-vol
    Bound condition

    10Ti
    ROX
    ontap-ai-flexvols-retain

    Bound
    pvc-l

                                 Bound pvc-236e893b-63b4-40d3-963b-e709b9b2816b
                               Bound pvc-b0f3f032-d028-11e9-9b9d-00505681a82d
10Gi RWO
minio-pv-claim
                    ontap-ai-flexvols-retain 10d
minio-pv-claim
20Gi RWO
                                  Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d
                     ontap-ai-flexvols-retain 10d
```

- 4. If you have not already done so, you must install the Kubeflow Pipelines SDK. See the <u>official</u> <u>Kubeflow documentation</u> for installation instructions.
- 5. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands that follow show the creation of a pipeline definition script for a pipeline that accepts the following parameters at run-time and then executes the following steps. Modify the pipeline definition script as needed depending on your specific process.

Run-time parameters:

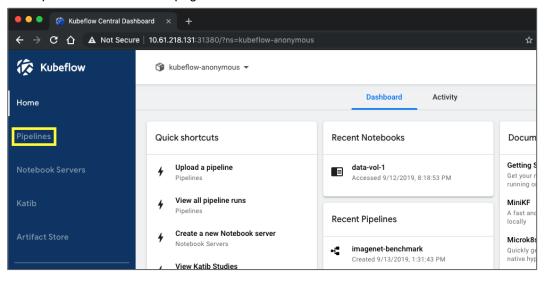
- ontap_cluster_mgmt_hostname: The host name or IP address of the ONTAP cluster on which your dataset and model volumes are stored.
- ontap_cluster_admin_acct_k8s_secret: the name of the Kubernetes secret that was created in step 1.
- ontap_verify_ssl_cert: Denotes whether to verify your cluster's SSL certificate when communicating with the ONTAP API (true/false).
- dataset_volume_pvc_existing: The name of the Kubernetes PersistentVolumeClaim (PVC) in the kubeflow namespace that is tied to the volume that contains the data that you want to use to train your model.
- dataset_volume_pv_existing: the name of the Kubernetes PersistentVolume (PV) object that corresponds to the dataset volume PVC. To get the name of the PV, you can run kubectl
 n kubeflow get pvc. The name of the PV that corresponds to a given PVC can be found in the VOLUME column.
- trained_model_volume_pvc_existing: The name of the Kubernetes
 PersistentVolumeClaim (PVC) in the kubeflow namespace that is tied to the volume on which you want to store your trained model.
- trained_model_volume_pv_existing: The name of the Kubernetes PersistentVolume (PV) object that corresponds to the trained model volume PVC. To get the name of the PV, you can run kubectl -n kubeflow get pvc. The name of the PV that corresponds to a given PVC can be found in the VOLUME column.
- execute_data_prep_step_yes_or_no: Denotes whether you wish to execute a data prep step as part of this particular pipeline execution (yes/no).
- data_prep_step_container_image: The container image in which you wish to execute your data prep step.
- data_prep_step_command: The command that you want to execute as your data prep step.
- data_prep_step_dataset_volume_mountpoint: The mountpoint at which you want to mount your dataset volume for your data prep step.
- train_step_container_image: The container image in which you wish to execute your training step.
- train step command: The command that you want to execute as your training step.
- train_step_dataset_volume_mountpoint: The mountpoint at which you want to mount your dataset volume for your training step.
- train_step_model_volume_mountpoint: The mountpoint at which you want to mount your model volume for your training step.
- validation_step_container_image: The container image in which you wish to execute your validation step.
- validation step command: The command that you want to execute as your validation step.

- validation_step_dataset_volume_mountpoint: the mountpoint at which you want to mount your dataset volume for your validation step.
- validation_step_model_volume_mountpoint: The mountpoint at which you want to mount your model volume for your validation step.

Pipeline steps:

- a. Optional: Execute a data prep step.
- b. Trigger the creation of a Snapshot copy, using NetApp Snapshot technology, of your dataset volume.
- Note: This Snapshot copy is created for traceability purposes. Each time that this pipeline workflow is executed, a Snapshot copy is created. Therefore, as long as the Snapshot copy is not deleted, it is always possible to trace a specific training run back to the exact training dataset that was used for that run.
- c. Execute a training step.
- d. Trigger the creation of a Snapshot copy, using NetApp Snapshot technology, of your trained model volume.
- Note: This Snapshot copy is created for versioning purposes. Each time that this pipeline workflow is executed, a Snapshot copy is created. Therefore, for each individual training run, a read-only versioned copy of the resulting trained model is automatically saved.
- e. Execute a validation step.

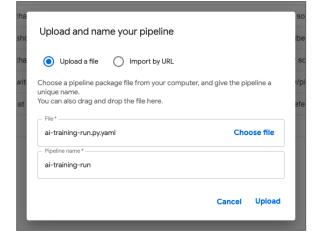
```
$ git clone https://github.com/NetApp/kubeflow jupyter pipeline.git
```


```
$ cd kubeflow_jupyter_pipeline/Pipelines/
```

```
$ vi ai-training-run.py
```

6. Execute the pipeline definition script that you created in step 5 to create a .yaml manifest for your pipeline.

```
$ python3 ai-training-run.py
$ ls ai-training-run.py.yaml
ai-training-run.py.yaml
```


7. From the Kubeflow central dashboard, click Pipelines in the main menu to navigate to the Kubeflow Pipelines administration page.

8. Click Upload Pipeline to upload your pipeline definition.

	Dashboard × + cure 10.61.218.131:31380/_/pipeline/?ns=kubeflow-anonymous 🛧 🐢 🛋	≝ ● ≈ ⊚ : ●
-C Pipelines	Pipelines + Upload pipeline	Refresh Delete
✓ Experiments	- Filter pipelines	
Archive	Pipeline name Description	Uploaded on $ \psi $
	[Sample] Basic A pipeline that downloads a message and prints it out	9/5/2019, 6:01:5
<	[Sample] Basic A pipeline shows how to use dsl.Condition. For source	9/5/2019, 6:01:5
	[Sample] Basic A pipeline that downloads two messages in parallel and	9/5/2019, 6:01:5
	Isamplel Rasic - A pipeline with two sequential steps. For source code, r	9/5/2019 6.01.5

9. Choose the .yaml manifest for your pipeline that you created in step 6, give your pipeline a name, and click Upload.

10. You should now see your new pipeline in the list of pipelines on the pipeline administration page. Click your pipeline's name to view it.

🗕 🔍 🌾 Kubeflow Central	Dashboard × +	
$\epsilon \rightarrow C \ c A Not Se$	ecure 10.61.188.111:31380/_/pipeline/#/pipelines	
🗮 🔅 Kubeflow		
শ <mark>#</mark> Pipelines	Pipelines	
✓ Experiments	- Filter pipelines	
• Artifacts	Pipeline name	Description
Executions	ai-training-run	
	[Sample] Basic - Exit Handler	A pipeline that down
Archive	[Sample] Basic - Conditional execution	A nineline shows ho

11. Review your pipeline to confirm that it looks correct.

🔍 🔍 🧶 🌾 Kubeflow Central I	Dashboard × +	
$\epsilon \rightarrow C \ c$ A Not Se	cure 10.61.188.111:31380/_/pipeline/#/pipeline	s/details/a6b7c60c-6e4f-42eb-b
😑 🔅 Kubeflow		
•1 Pipelines	Pipelines	
✓ Experiments	Graph Source	
• Artifacts	condition-1	
Executions		
Archive	data-prep	netappsnapshot
<		
		train-model
		netappsnapshot-2
		validate-model

12. Click Create run to run your pipeline.

🔍 🔍 🧑 Kub	eflow Central Dashboard X	+			,
$\leftrightarrow \rightarrow$ C Δ	A Not Secure 10.61.18	38.111:31380/_/pipeline/#/pip	elines/details/ 🛧 🐢	• • • • • •	≡1 🚳 i
😑 🔅 Кир	eflow				
•t Pipelines	^{Pipelir} ← ai-tr	aining-run	+ Create run	+ Create experiment	Delete
🛷 Experimen	Graph	Source			
• Artifacts					
Execution	15	condition-1			
Archive		data-prep	netappsnapshot		
<					
			train-model		
			Ļ		
			netappsnapshot-2		
			validate-model		

13. You are now presented with a screen from which you can start a pipeline run. Create a name for the run, enter a description, choose an experiment to file the run under, and choose whether you want to initiate a one-off run or schedule a recurring run.

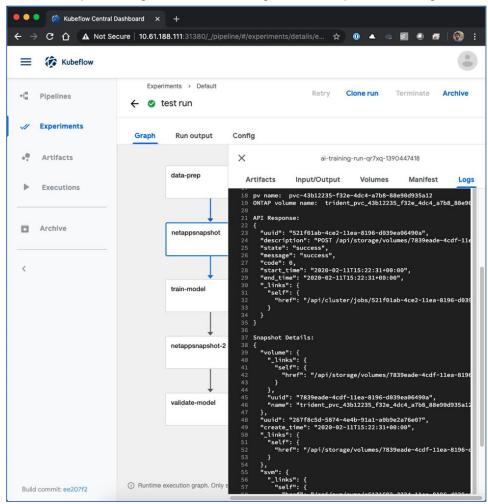
	🌔 🏠 Kubeflow Central	Dashboard × +)
$\leftarrow \rightarrow$	C 🟠 🔺 Not Se	ecure 10.61.188.111:31380/_/pipeline/#/runs/new?pipelin 🖈 💿 🗛 💷 🗐 💿 🕿	⊒1	🚳 :
=	Kubeflow			
•("	Pipelines	Experiments		
~"	Experiments	Run details		
••	Artifacts	Pipeline*		
►	Executions	Run name*		
	Archive	Description (optional)		
<		This run will be associated with the following experiment Experiment* Default Choose		
		Run Type		
		One-off ORecurring		

14. Define parameters for the run, and then click Start. In the following example, the default values are accepted for most parameters. Details for the volume that was imported into the kubeflow namespace in step 2 are entered for dataset_volume_pvc_existing and dataset_volume_pv_existing. Details for the volume that was imported into the kubeflow namespace in step 3 are entered for trained_model_volume_pvc_existing and trained_model_volume_pv_existing. Non-AI-related commands are entered for the data_prep_step_command, train_step_command, and validation_step_command parameters in order to plainly demonstrate the functionality of the pipeline. Note that you defined the default values for the parameters within your pipeline definition (see step 5).

Run Type
One-off Ore-config
Run parameters
Specify parameters required by the pipeline
- ontap_cluster_mgmt_hostname
10.61.188.40
- ontap_cluster_admin_acct_k8s_secret
ontap-cluster-mgmt-account
- ontap_api_verify_ssl_cert
False
- dataset_volume_pvc_existing
dataset-vol
- dataset_volume_pv_existing
pvc-43b12235-f32e-4dc4-a7b8-88e90d935a12
- trained_model_volume_pvc_existing
kfp-model-vol
trained_model_volume_pv_existing
pvc-236e893b-63b4-40d3-963b-e709b9b2816b

	- execute_data_prep_step_yes_or_no
	yes
	- data_prep_step_container_image
	ubuntu:bionic
	data_prep_step_command
	echo "demo data" > /mnt/dataset/demo-data.txt
	- data_prep_step_dataset_volume_mountpoint
	/mnt/dataset
	- train_step_container_image
	nvcr.io/nvidia/tensorflow:19.12-tf1-py3
	- train_step_command
	cat /mnt/dataset/demo-data.txt && echo "demo model" > /mnt/model/demo-model.txt
	- train_step_dataset_volume_mountpoint
	/mnt/dataset
	rain_step_model_volume_mountpoint
	/mnt/model
	validation_step_container_image
	nvcr.io/nvidia/tensorflow:19.12-tf1-py3
	- validation_step_command
	cat /mnt/model/demo-model.txt
	- validation_step_dataset_volume_mountpoint
	/mnt/dataset
	 validation_step_model_volume_mountpoint
	/mnt/model
	Start Cancel
Build commit: ee207f2	

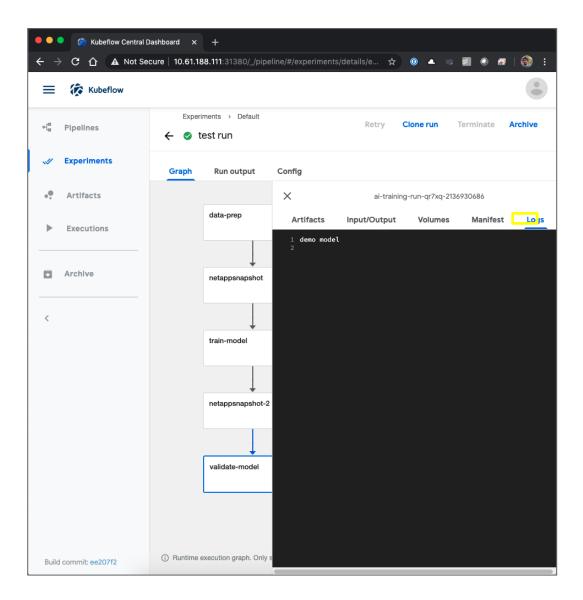
15. You are now presented with a screen listing all runs that fall under the specific experiment. Click the name of the run that you just started to view it.


•••	🔍 츊 Kubeflow Central 🛙	ashboard × +
$\leftarrow \rightarrow$	C 🟠 🔺 Not Se	cure 10.61.188.111:31380/_/pipeline/#/runs/new?pipelin 🖈 🕼 🔺 💿 🜌 💿 👼 🗊 🌍 🗄
=	Kubeflow	•
۰Ľ	Pipelines	Experiments Refresh
	Experiments	Recurring run configs Experiment description
•••	Artifacts	O active All runs created without specifying an experi Manage
►	Executions	Runs + Create recurring run Compare runs Clone run Archiv
	Archive	Filter runs
<		□ Run name Status Duration Pipeline Recurring Start time ↓
		Ltest run Image: Provide the structure 2/11/2020, 3: Rows per page: 10 ▼ >

16. At this point, the run is likely still in progress.

••	Kubeflow Central D	ashboard X	+					
← →	C 🟠 🔺 Not Se	cure 10.61.188.	. 111 :31380/_/pipe	eline/#/runs/details/bb2	☆ (🖗 🔺 💼 🛊		⊐ i 🚳 i
=	Kubeflow							
۰Ę	Pipelines	Experime	ents > Default st run		Retry	Clone run	Terminate	Archive
-11	Experiments	Graph	Run output	Config				
••	Artifacts							
►	Executions		data-prep	0				
۵	Archive		netappsnapshot	0				
<			000					

17. Confirm that the run completed successfully. When the run is complete, every stage of the pipeline shows a green check-mark icon.


••	City Kubeflow Central I	Dashboard X	+						
← -	C 🗘 🔺 Not Se	ecure 10.61.18	8.111:31380/_/pipe	line/#/experi	ments/det	*) 🔺 🛋		⊐J 🚳 :
≡	🌾 Kubeflow								•
۰¢	Pipelines	Experie	ments > Default est run			Retry	Clone run	Terminate	Archive
	Experiments	Graph	Run output	Config					
••	Artifacts			0					
•	Executions		data-prep						
	Archive		netappsnapshot	۲					
<			Ļ						
			train-model	0					
			Ļ						
			netappsnapshot-2	0					
			validate-model	•					

18. Click a specific stage, and then click Logs to view output for that stage.

		Experi	iments > Default		Retry	Clone run	Terminate	Archive
•(Pipelines	← ⊘ t	est run		Retry	cione run	Terminate	Archive
"	Experiments	Graph	Run output	Config				
••	Artifacts			×	ai-trainin	g-run-qr7xq-196	1284282	
	Executions		data-prep	Artifacts	Input/Output	Volumes	Manifest	Log
r	LAGGETION			1 demo data 2				
	Archive		\downarrow					
			netappsnapshot					
<								
			train-model	-				
				-				
			netappsnapshot-2	1				
			validate-model					

🗮 🔅 Kubeflow			
କ[≝ Pipelines		iments > Default est run	Retry Clone run Terminate Archive
Section 2017 Experiments	Graph	Run output	Config
• Artifacts			X ai-training-run-qr7xq-1385150981
Executions		data-prep	Artifacts Input/Output Volumes Manifest Lo
Archive		netappsnapshot	20 21 API Response: 22 { 23 "uuid": "5dd8b7d1-4ce3-1lea-808d-d039ea06439f", 24 "description": "POST /api/storage/volumes/7f55bea7-4cdf-1. 25 "state": "success", 26 "state": "success", "
<			<pre>26 "message": "success", 27 "code": 0, 28 "start_time": "2020-02-11T15:30:00+00:00", 29 "end_time": "2020-02-11T15:30:00+00:00", 30 "_links": {</pre>
		train-model	31
			35 } 36 37 Snapshot Details:
		netappsnapshot-2	
			42 "uuid": ¹ 7f55bea7-4cdf-llea-808d-d039ea96439f", 43 "name": "trident_pvc_236e893b_63b4_40d3_963b_e709b9b281 44 "_links": {
		validate-model	<pre>45 "self": {</pre>
			49 }, 50 "create_time": "2020-02-11T15:30:00+00:00", 51 "_links": { 52 "self": {

Create a Kubeflow Pipeline to Rapidly Clone a Dataset for a Data Scientist Workspace

Perform the following tasks to define and execute a new Kubeflow Pipeline that takes advantage of NetApp FlexClone technology to clone a dataset volume rapidly and efficiently and create a data scientist or developer workspace. For more information about Kubeflow Pipelines, see the <u>official Kubeflow</u> <u>documentation</u>.

- **Note:** The example Kubeflow Pipeline that is detailed in this section is not compatible with FlexGroup volumes. At the time of this writing, FlexGroup volumes must be cloned by using ONTAP System Manager, the ONTAP CLI, or the ONTAP API, and then imported into the Kubernetes cluster. For details about importing a volume using Trident, see the section "Import an Existing Volume."
- 1. If you have not already done so, you must install the Kubeflow Pipelines SDK. For installation instructions, see the <u>official Kubeflow documentation</u>.
- 2. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands that follow show the creation of a pipeline definition script for a pipeline that accepts the following parameters at run-time and then executes the following steps. Modify the pipeline definition script as needed depending on your specific process.

Run-time parameters:

- workspace name: The name that you want to give to your new workspace.
- dataset_volume_pvc_existing: The name of the Kubernetes PersistentVolumeClaim (PVC) that corresponds to the dataset volume that you wish to clone.
- dataset_volume_pvc_existing_size: The size of the dataset volume that you wish to clone; for example, 10Gi, 100Gi, or 2Ti.
- trident_storage_class: The Kubernetes StorageClass that the dataset volume you wish to clone is associated with.
- jupyter_namespace: The namespace in which you intend to create a Jupyter Notebook workspace. For details about creating a Jupyter Notebook workspace, see the section "Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use." The dataset clone that this pipeline creates is mountable in the Jupyter Notebook workspace.
- Note: The existing dataset volume PVC that you wish to clone from (the value of the dataset volume pvc existing parameter) must be in this same namespace.

Pipeline steps:

- a. Trigger the creation of a clone, using NetApp FlexClone technology, of your dataset volume.
- b. Print instructions for deploying an interactive Jupyter Notebook workspace that has access to the dataset clone.

```
$ git clone https://github.com/NetApp/kubeflow jupyter pipeline.git
```

```
$ cd kubeflow_jupyter_pipeline/Pipelines/
```

```
$ vi create-data-scientist-workspace.py
```

3. Execute the pipeline definition script that you created in step 2 to create a .yaml manifest for your pipeline.

```
$ python3 create-data-scientist-workspace.py
$ ls create-data-scientist-workspace.py.yaml
create-data-scientist-workspace.py.yaml
```

4. From the Kubeflow central dashboard, click Pipelines in the main menu to navigate to the Kubeflow Pipelines administration page.

📕 🔍 🔍 🏠 Kubeflow Central Dash	board × +		
← → C û 🔺 Not Secure	e 10.61.218.131:31380/?ns=kubeflow-anonymous	;	☆
🐼 Kubeflow	🕥 kubeflow-anonymous 👻		
Home		Dashboard Activity	
Pipelines	Quick shortcuts	Recent Notebooks	Docum
Notebook Servers	4 Upload a pipeline Pipelines	■ data-vol-1 Accessed 9/12/2019, 8:18:53 PM	Getting S Get your r running or
Katib	4 View all pipeline runs Pipelines	Recent Pipelines	MiniKF A fast and locally
Artifact Store	Create a new Notebook server Notebook Servers View Katib Studies	• imagenet-benchmark Created 9/13/2019, 1:31:43 PM	Microk8s Quickly ge native hyp

5. Click Upload Pipeline to upload your pipeline definition.

Kubeflow Central Dashboard × +				
\leftrightarrow \rightarrow \bigcirc \bigtriangleup Not Se	cure 10.61.218.131:31380/_/pipeline/?ns=kubeflow-anonymous 📩 🚯 🔺 👊	🗐 🔍 🗖 🎯 🗄		
😑 🔅 Kubeflow		•		
•t <mark>#</mark> Pipelines	Pipelines + Upload pipeline	Refresh Delete		
✓ Experiments	- Fiter pipelines			
Archive	Pipeline name Description	Uploaded on $ rac{1}{V} $		
	[Sample] Basic A pipeline that downloads a message and prints it out	9/5/2019, 6:01:5		
<	[Sample] Basic A pipeline shows how to use dsl.Condition. For source	9/5/2019, 6:01:5		
	[Sample] Basic A pipeline that downloads two messages in parallel and	9/5/2019, 6:01:5		
	ISample) Racic - A nineline with two sequential steps. For source code, r	9/5/2019 6:01:5		

6. Choose the . yaml file containing your pipeline definition that you created in step 3, give your pipeline a name, and click Upload.

 Upload a file 	Import by URL		
Choose a pipeline pa unique name. You can also drag an	ackage file from your computer, d drop the file here.	and give the pipe	eline a
- File*			
create-data-scien	tist-workspace.py.yaml	Choo	se file
 Pipeline name * 			
- Pipeline name			
create-data-scien	tist-workspace		

7. You should now see your new pipeline in the list of pipelines on the pipeline administration page. Click your pipeline's name to view it.

🔍 🔍 🌾 Kubeflow Central	Dashboard × +
$\leftarrow \rightarrow C \ \bigcirc \ \blacktriangle$ Not Se	ecure 10.61.188.111:31380/_/pipeline/#/pipelines
😑 🔅 Kubeflow	
•l <mark>=</mark> Pipelines	Pipelines
✓ Experiments	Filter pipelines
• Artifacts	Pipeline name Descrip
Executions	Create-data-scientist-workspace
Archive	ai-training-run

8. Review your pipeline to confirm that it looks correct.

••	🌾 Kubeflow Central I	Dashboard × +
← →	C 🛆 🛈 Not Se	cure 10.61.188.111:31380/_/pipeline/#/pipelines/details/
≡	Kubeflow	
-4	Pipelines	Pipelines ← create-data-scientist-workspace
.//	Experiments	Graph Source
••	Artifacts	
►	Executions	dataset-clone-for-w
	Archive	print-instructions
<		

9. Click Create run to run your pipeline.

••	● ● ● 🍖 Kubeflow Central Dashboard × +			
← -	C 🛆 🛈 Not Se	ecure 10.61.188.111:31380/_/pipeline/#/pipelines/details/6f44 🛧 🚱 🔺 😇 💷 🗐 💿 👼 🎼) i	
≡	Kubeflow		•	
-4	Pipelines	Pipelines + Create run + Create experiment Deleter	ete	
.//	Experiments	Graph Source		
••	Artifacts	dataset-clone-for-w		
►	Executions	Galaser-cone-ror-w		
	Archive	print-instructions		
<				

10. You are now presented with a screen from which you can start a pipeline run. Create a name for the run, enter a description, select an experiment to file the run under, and select whether you want to initiate a one-off run or schedule a recurring run.

••	🌾 Kubeflow Central Da	ashboard × +				
← →	C 🟠 🔺 Not Sec	ure 10.61.188.111:31380/_/pipeline/#/pipelines/details/f2c464 🛧 🕼 🔺 💷)	7	1 🚳 🗄	
≡	Kubeflow				•)
•[<mark>#</mark>	Pipelines	Experiments				
.4	Experiments	Run details				
•••	Artifacts	Pipeline * create-data-scientist-workspace Choos	se			
►	Executions	Run name*				
	Archive	Description (optional) Testing the pipeline.				
<		This run will be associated with the following experiment				
		Default Choo:	se			l
		One-off Recurring				

11. Define parameters for the run, and then click Start. Reference step 2 for details on the individual parameters.

	Run parameters
	Specify parameters required by the pipeline
	workspace_name
	dev
	dataset_volume_pvc_existing
	gold-dataset
	dataset_volume_pvc_existing_size
	10Gi
	- storage_class
	ontap-flexvol
	jupyter_namespace —
	admin
Build commit: ee207f2	Start Cancel

12. You are now presented with a screen listing all runs that fall under the specific experiment. Click the name of the run that you just started to view it.

🗕 🔍 🌾 Kubeflow Ce	entral Dashboard × +			
	lot Secure 10.61.188.111:31380/_/pipelin	e/#/experiments/detail	s/e73 🛧 🕼 🔺	= 🗾 🔍 🗖 🚳 🗄
😑 🔅 Kubeflow				٠
el <mark>a</mark> Pipelines	Experiments			Refresh
Experiments	Recurring run configs	Experiment descrip	tion 🖸	
• Artifacts	O active Manage	All runs created wit	hout specifying an experi	
Executions	+ Create run	+ Create recurrin	g run Compare runs	Clone run Archive
Archive	Filter runs			
<	Run name S	Status Duration	Pipeline Recu	rring Start time ↓
	test workspace	0 -	create-data-sc	2/12/2020, 3:4
	test run	0:13:07	ai-training-run -	2/11/2020, 3:1
			Rows per	r page: 10 👻 < >

13. At this point, the run is likely still in progress.

••	Kubeflow Central E	Dashboard × +	
← -	C 🟠 🔺 Not Se	scure 10.61.188.111:31380/_/pipeline/#/runs/details/f680b33e-0 🖈 📭 🔺 💷	🗷 🔍 🗖 🎯 E
=	Kubeflow		
۰Ľ	Pipelines	Experiments > Default Retry Clone run Te	erminate Archive
	Experiments	Graph Run output Config	
•?	Artifacts		
•	Executions		
	Archive		
<			
		C	

14. Confirm that the run completed successfully. When the run is complete, every stage of the pipeline shows a green check-mark icon.

• • • Kubeflow Central Dashboard × +			
\leftarrow \rightarrow C \triangle A Not Se	cure 10.61.188.111:31380/_/pipeline/#/runs/details/b0bc762 🛧 🐢 🔺 🖻 🗉 🗐 🕢 🛜 📔		
😑 🔅 Kubeflow			
et≝ Pipelines	Experiments > Default Retry Clone run Terminate Archive		
Experiments	Graph Run output Config		
• Artifacts	dataset-clone-for		
Executions			
Archive	print-instructions		
<			

15. Click the dataset-clone-for-workspace stage, and then click Logs to view output for that stage.

••	🌔 🏠 Kubeflow Central D	Dashboard X	+					Ì
← →	C 🛆 🔺 Not Se	ecure 10.61.18	8.111:31380/_/pipeli	ne/#/runs/details/k	00bc762 🛧	🗣 🔺 👳	a 🗐 🔘 i	a 🚳 🗄
⊨	Kubeflow							•
۰(Pipelines		ments > Default		Retry	Clone run	Terminate	Archive
~//	Experiments	Graph	Run output	Config				
••	Artifacts			×	create-data-scien	tist-workspace-	8sz4c-25790448	314
►	Executions		dataset-clone-for		Input/Output			
	Archive		print-instructions	3 time="202 4 time="202 5 time="202 6 time="202 7 time="202	0-06-12T20:02:21Z" 0-06-12T20:02:21Z" 0-06-12T20:02:22Z" 0-06-12T20:02:22Z" 0-06-12T20:02:22Z" 0-06-12T20:02:22Z"	level=info ms level=info ms level=info ms level=info ms level=info ms	sg="Loading ma sg="kubectl cr sg=admin/Persi sg="Saving res sg="[kubectl g	nifest to /tmp eate -f /tmp/m stentVolumeCla ource output p et PersistentV
<				9 time="202 10 time="202	9-06-12T20:02:22Z" 9-06-12T20:02:22Z" 9-06-12T20:02:22Z" 9-06-12T20:02:22Z"	level=info ms level=info ms	sg="[kubectl g sg="Saved outp	et PersistentV ut parameter:

16. Click the print-instructions stage, and then click Logs to view the outputted instructions. See the section "Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use" for details on creating a Jupyter Notebook workspace.

×	Create-data-scientist-workspace-8sz4c-3312647359											
Artifacts	Input/Output	Volumes	Manifest	Logs								
1 To deploy 2	an interactive wo	rkspace, provi	ision a new Jup	upyter workspace in namespace, admin, and mount dataset volume, dataset-workspace-dev.								

Create a Kubeflow Pipeline to Trigger a SnapMirror Volume Replication Update

You can define and execute a new Kubeflow pipeline that takes advantage of NetApp SnapMirror data replication technology to replicate the contents of a volume between different ONTAP clusters.

This pipeline can be used to replicate data of any type between ONTAP clusters that might or might not be located at different sites or in different regions. Potential use cases include:

- Replicating newly acquired sensor data gathered at the edge back to the core data center or to the cloud to be used for AI/ML model training or retraining.
- Replicating a newly trained or newly-updated model from the core data center to the edge or to the cloud to be deployed as part of an inferencing application.

For more information about Kubeflow pipelines, see the <u>official Kubeflow documentation</u>. Note that the example pipeline that is shown in this section only works with volumes that reside on ONTAP storage systems or software-defined instances.

To create a new Kubeflow pipeline to trigger a SnapMirror volume replication update, perform the following steps:

- **Note:** Before you perform the exercises that are outlined in this section, we assume that you have already initiated an asynchronous SnapMirror relationship between the source and the destination volume according to standard configuration instructions. For details, refer to <u>official NetApp documentation</u>.
- 1. If you have not already done so, create a Kubernetes secret containing the username and password of the cluster admin account for the ONTAP cluster on which your destination volume resides
- 2. This secret must be created in the kubeflow namespace because this is the namespace that pipelines are executed in. Replace username and password with your username and password when executing these commands and use the output of the base64 commands (see highlighted text) in your secret definition accordingly.

```
$ echo -n 'username' | base64
dXNlcm5hbWU=
$ echo -n 'password' | base64
cGFzc3dvcmO=
$ cat << EOF > ./secret-ontap-cluster-mgmt-account.yaml
apiVersion: v1
kind: Secret
metadata:
 name: ontap-cluster-mgmt-account
 namespace: kubeflow
data:
 username: dXNlcm5hbWU=
 password: cGFzc3dvcmQ=
EOF
$ kubectl create -f ./secret-ontap-cluster-mgmt-account.yaml
secret/ontap-cluster-mgmt-account created
```

3. If you have not already done so, install the Kubeflow Pipelines SDK. See the <u>official Kubeflow</u> <u>documentation</u> for installation instructions.

4. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands that follow show the creation of a pipeline definition script for a pipeline that accepts the following parameters at run-time and then executes the following steps. Modify the pipeline definition script as needed depending on your specific process.

Pipeline steps:

a. Trigger a replication update for the specified asynchronous SnapMirror relationship.

Run-time parameters:

- ontap_cluster_mgmt_hostname: The host name or IP address of the ONTAP cluster on which the destination volume resides.
- ontap_cluster_admin_acct_k8s_secret: The name of the Kubernetes secret that was created in step 1.
- ontap_api_verify_ssl_cert: Denotes whether to verify your cluster's SSL certificate when communicating with the ONTAP API (yes/no).
- source svm: The name of the SVM on which the source volume resides.
- source_volume: The name of the source volume (the volume that you are replicating from) on the source cluster.
- destination svm: The name of the SVM on which the destination volume resides.
- destination_volume: The name of the destination volume (the volume that you are replicating to) on the destination cluster.

```
$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git
```

```
$ cd kubeflow_jupyter_pipeline/Pipelines/
$ vi replicate-data-snapmirror.py
```

5. Execute the pipeline definition script that you created in step 4 to create a .yaml manifest for your pipeline.

```
$ python3 replicate-data-snapmirror.py
$ ls replicate-data-snapmirror.py.yaml
replicate-data-snapmirror.py.yaml
```

6. Follow steps 7 through 18 from the section "Create a Kubeflow Pipeline to Execute an End-to-End AI Training Workflow with Built-in Traceability and Versioning."

Be sure to use the .yaml manifest that was created in the previous step (step 5) of this section instead of the manifest that was created in the section "Create a Kubeflow Pipeline to Execute an End-to-End AI Training Workflow with Built-in Traceability and Versioning."

Create a Kubeflow Pipeline to Trigger a Cloud Sync Replication Update

You can define and execute a new Kubeflow pipeline that takes advantage of NetApp Cloud Sync replication technology to replicate data to and from a variety of file and object storage platforms. Potential use cases include:

- Replicating newly-acquired sensor data gathered at the edge back to the core data center or to the cloud to be used for AI/ML model training or retraining.
- Replicating a newly-trained or newly-updated model from the core data center to the edge or to the cloud to be deployed as part of an inferencing application.
- Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the training of an AI/ML model.
- Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML training environment for use in the training of an AI/ML model.
- Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage.

 Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance AI/ML training environment for use in the training of an AI/ML model.

For more information about Kubeflow pipelines, see the official Kubeflow documentation.

Note: The example pipeline that is shown in this section only works with volumes that reside on ONTAP storage systems or software-defined instances.

To create a new Kubeflow pipeline to trigger a Cloud Sync replication update, perform the following steps:

- **Note:** Before you perform the exercises that are outlined in this section, we assume that you have already initiated the Cloud Sync relationship that you wish to trigger an update for. To initiate a relationship, visit <u>cloudsync.netapp.com</u>.
- 1. If you do not yet have a Cloud Sync API refresh token, access the following URL using your web browser to create one: <u>https://services.cloud.netapp.com/refresh-token</u>.
- 2. If you have not already done so, create a Kubernetes secret containing your Cloud Sync API refresh token. This secret must be created in the kubeflow namespace because this is the namespace that pipelines are executed in. Replace <your refresh token> with your refresh token when executing these commands and use the output of the base64 command (see highlighted text) in your secret definition accordingly.

```
$ echo -n '<your refresh token>' | base64
PHlvdXIgcmVmcmVzaCB0b2tlbj4=
$ cat << EOF > ./secret-cloud-sync-refresh-token.yaml
apiVersion: v1
kind: Secret
metadata:
    name: cloud-sync-refresh-token
    namespace: kubeflow
data:
    refreshToken: PHlvdXIgcmVmcmVzaCB0b2tlbj4=
EOF
$ kubectl create -f ./secret-cloud-sync-refresh-token.yaml
secret/ secret-cloud-sync-refresh-token created
```

- 3. If you have not already done so, install the Kubeflow Pipelines SDK. For installation instructions, see the official Kubeflow documentation.
- 4. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands that follow show the creation of a pipeline definition script for a pipeline that accepts the following parameters at run-time and then executes the following steps. Modify the pipeline definition script as needed depending on your specific process.

Pipeline steps:

a. Trigger a replication update for the specified Cloud Sync relationship.

Run-time parameters:

- cloud_sync_relationship_id: The relationship ID of the Cloud Sync relationship for which you want to trigger an update. If you do not know the relationship ID, you can retrieve it by using the Jupyter Notebook that is included in the section "Trigger a Cloud Sync Replication Update from Within a Jupyter Notebook" or by directly calling the <u>Relationships-v2 API</u>.
- cloud_sync_refresh_token_k8s_secret: The name of the Kubernetes secret that was created in step 2.

```
$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git
```

- \$ cd kubeflow_jupyter_pipeline/Pipelines/
- \$ vi replicate-data-cloud-sync.py
- 5. Execute the pipeline definition script that you created in step 4 to create a .yaml manifest for your pipeline

```
$ python3 replicate-data-cloud-sync.py
```

```
$ ls replicate-data-cloud-sync.py.yaml
```

6. Follow steps 7 through 18 from the section "Create a Kubeflow Pipeline to Execute an End-to-End AI Training Workflow with Built-in Traceability and Versioning."

Be sure to use the .yaml manifest that was created in the previous step (step 5) of this section instead of the manifest that was created in the section "Create a Kubeflow Pipeline to Execute an End-to-End AI Training Workflow with Built-in Traceability and Versioning."

Apache Airflow Deployment

NetApp recommends running Apache Airflow on top of Kubernetes. This section describes the tasks that you must complete to deploy Airflow in your Kubernetes cluster.

Note: It is possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on platforms other than Kubernetes is outside of the scope of this document.

Prerequisites

Before you perform the deployment exercise that is outlined in this section, we assume that you have already performed the following tasks:

- 1. You already have a working Kubernetes cluster.
- 2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in the section "NetApp Trident Deployment and Configuration."

Install Helm

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow, you must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow the <u>installation instructions</u> in the official Helm documentation.

Set Default Kubernetes StorageClass

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster. The Airflow deployment process attempts to provision new persistent volumes using the default StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment fails. To designate a default StorageClass within your cluster, follow the instructions outlined in the section "Set Default Kubernetes StorageClass." If you have already designated a default StorageClass within your cluster, then you can skip this step.

Use Helm to Deploy Airflow

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment jump host:

1. Deploy Airflow using Helm by following the <u>deployment instructions</u> for the official Airflow chart on the Helm Hub. The example commands that follow show the deployment of Airflow using Helm. Modify, add, and/or remove values in the custom-values.yaml file as needed depending on your environment and desired configuration.

```
## environment variables for the web/scheduler/worker Pods (for airflow configs)
  ##
  config:
   AIRFLOW KUBERNETES DELETE WORKER PODS: "False"
   AIRFLOW__KUBERNETES__GIT_REPO: "git@github.com:mboglesby/airflow-dev.git"
   AIRFLOW_KUBERNETES_GIT_BRANCH: master
AIRFLOW_KUBERNETES_GIT_DAGS_FOLDER_MOUNT_POINT: "/opt/airflow/dags"
   AIRFLOW_KUBERNETES_DAGS_VOLUME_SUBPATH: "repo/"
   AIRFLOW_KUBERNETES_GIT_SSH_KEY_SECRET_NAME: "airflow-git-key"
AIRFLOW_KUBERNETES_WORKER_CONTAINER_REPOSITORY: "apache/airflow"
AIRFLOW_KUBERNETES_WORKER_CONTAINER_TAG: "1.10.12"
   AIRFLOW__KUBERNETES__RUN_AS_USER: "50000"
AIRFLOW_KUBERNETES_LOGS_VOLUME_CLAIM: "airflow-k8s-exec-logs"
workers:
 enabled: false # Celery workers
**********
# Airflow - WebUI Configs
*****
weh•
 ## configs for the Service of the web Pods
 ##
 service:
   type: NodePort
*****
# Airflow - Logs Configs
****
logs:
 persistence:
   enabled: true
# Airflow - DAGs Configs
dags:
  ## configs for the DAG git repository & sync container
  ##
 git:
   ## url of the git repository
   ##
   url: "git@github.com:mboglesby/airflow-dev.git"
   ## the branch/tag/sha1 which we clone
   ##
   ref: master
   ## the name of a pre-created secret containing files for ~/.ssh/
   ##
   ## NOTE:
    ## - this is ONLY RELEVANT for SSH git repos
    ## - the secret commonly includes files: id_rsa, id_rsa.pub, known_hosts
    ## - known hosts is NOT NEEDED if `git.sshKeyscan` is true
   ##
   secret: "airflow-git-key-files"
   sshKeyscan: true
   ## the name of the private key file in your `git.secret`
   ##
    ## NOTE:
   ## - this is ONLY RELEVANT for PRIVATE SSH git repos
    ##
   privateKeyName: id rsa
   ## the host name of the git repo
   ##
    ## NOTE:
    ## - this is ONLY REQUIRED for SSH git repos
    ##
    ## EXAMPLE:
```

```
##
        repoHost: "github.com"
    ##
   repoHost: "github.com"
    ## the port of the git repo
    ##
    ## NOTE:
    ## - this is ONLY REQUIRED for SSH git repos
    ##
   repoPort: 22
    ## configs for the git-sync container
   ##
   gitSync:
      ## enable the git-sync sidecar container
      ##
      enabled: true
      ## the git sync interval in seconds
      ##
      refreshTime: 60
EOF
$ helm install "airflow" stable/airflow --version "7.10.1" --namespace "airflow" --values
./custom-values.yaml
NAME: airflow
LAST DEPLOYED: Mon Oct 5 18:32:11 2020
NAMESPACE: airflow
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
Congratulations. You have just deployed Apache Airflow!
1. Get the Airflow Service URL by running these commands:
   export NODE PORT=$(kubectl get --namespace airflow -o jsonpath="{.spec.ports[0].nodePort}"
services airflow-web)
  export NODE IP=$(kubectl get nodes --namespace airflow -o
jsonpath="{.items[0].status.addresses[0].address}")
  echo http://$NODE IP:$NODE PORT/
2. Open Airflow in your web browser
```

```
2. Confirm that all Airflow pods are up and running.
```

```
$ kubectl -n airflow get pod
NAME
                                    READY
                                            STATUS
                                                      RESTARTS
                                                                 AGE
airflow-postgresgl-0
                                    1/1
                                            Running
                                                                 38m
                                                      0
airflow-redis-master-0
                                    1/1
                                            Running
                                                      0
                                                                 38m
airflow-scheduler-7fb4bf56cc-g88z4
                                    2/2
                                            Running
                                                      2
                                                                 38m
airflow-web-8f4bdf5fb-hhxr7
                                    2/2
                                            Running
                                                      1
                                                                 38m
airflow-worker-0
                                    2/2
                                            Running
                                                      0
                                                                 38m
```

3. Obtain the Airflow web service URL by following the instructions that were printed to the console when you deployed Airflow using Helm in step 1.

```
$ export NODE_PORT=$(kubectl get --namespace airflow -o jsonpath="{.spec.ports[0].nodePort}"
services airflow-web)
$ export NODE_IP=$(kubectl get nodes --namespace airflow -o
jsonpath="{.items[0].status.addresses[0].address}")
$ echo http://$NODE_IP:$NODE_PORT/
http://10.61.188.112:30366/
```

4. Confirm that you can access the Airflow web service.

	C	☆ ▲ Not Secure 10.61.188.112:30366/	admin/			☆	<u>م</u> ي		₹.	0 🗟	* (89
Į	Airflow	DAGs Data Profiling ✓ Browse ✓	Admin 🗸	Docs 🗸	About 🗸				2020	-10-05 1	9:17:46	
A	Gs											
					Search:							
						Last						
	0	DAG	Schedule	Owner	Recent Tasks 🕄	Run 🔁	DAG Run	is 🖯		L	nks	
3	Off	ai_training_run	None	NetApp					•	•*.I®	<u>, ₩</u>	.
3	Off	create_data_scientist_workspace	None	NetApp					•	•*.I®	<u>₩</u>	∎C⊗
3	Off	example_bash_operator	00***	Airflow					۲	•*.I®	<u>₩</u>	.
z	Off	example_branch_dop_operator_v3	*/1 ****	Airflow					۲	• * . I # •	<u>, k</u> ≡ ≁ I	.
3	Off	example_branch_operator	@daily	Airflow					۲	•*.I®	∤ ≡≁	.
3	Off	example_complex	None	airflow					۲	• * .14)	<u>, *</u> ≡ ≁	3 8
3	Off	example_external_task_marker_child	None	airflow					۲	• • .i.e)	¥≡≁	3 8
3	Off	example_external_task_marker_parent	None	airflow					۲	• * . 14)	*=*	3 8
3	Off	example_http_operator	1 day, 0:00:00	Airflow					0	•*.ia)	∖ ≞≁i	∎C⊗
3	Off	example_kubernetes_executor_config	None	Airflow					۲	• • .IW	<u>⊀</u> ≡≁≣	CO
3	Off	example_nested_branch_dag	@daily	airflow					0	•*.IB)	*=*	-3 0
3	Off	example_passing_params_via_test_command	*/1 ****	airflow					۲	•*.IB)	*=*	3 8
3	Off	example_pig_operator	None	Airflow					0	•*.IB	₩ ≣≁	3 2 8
3	Off	example_python_operator	None	Airflow					۲	•*.I®	*=*	
3	Off	example_short_circuit_operator	1 day, 0:00:00	Airflow					0	**.16	A ≡ +	=C 0

Example Apache Airflow Workflows

This section includes example Apache Airflow DAGs that highlight various NetApp data management capabilities and demonstrate how they can be implemented as part of an Airflow workflow. For more information on DAGs and for detailed instructions regarding how to define and execute them, refer to the official Airflow documentation.

Implement an End-to-End AI Training Workflow with Built-in Traceability and Versioning

The example DAG outlined in this section implements a workflow that takes advantage of NetApp Snapshot technology to integrate rapid and efficient dataset and model versioning and traceability into an end-to-end AI/ML model training workflow.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites:

1. You must have created a connection in Airflow for your ONTAP system.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI. The example screenshot that follows shows the creation of a connection for a specific ONTAP system. The following values are required:

- **Conn ID.** Unique name for the connection.
- Host. The host name or IP address of the ONTAP cluster on which your dataset and model volumes are stored.
- Login. Username of the cluster admin account for the ONTAP cluster on which your volumes reside.
- **Password.** Password of the cluster admin account for the ONTAP cluster on which your volumes reside.

	eate]								
ist Create									
Conn Id *	ontap_ai								
Conn Type									
Host	10.61.188.40								
Schema									
Login	admin								
Password	•••••								
Port									
Extra									
	Save Save an	d Add Another	Save a	nd Continue Ec	iting Cance	el			

- 2. There must be an existing PersistentVolumeClaim (PVC) in the airflow namespace that is tied to the volume that contains the data that you want to use to train your model.
- 3. There must be an existing PersistentVolumeClaim (PVC) in the airflow namespace that is tied to the volume on which you want to store your trained model.

DAG Definition

The Python code excerpt that follows contains the definition for the example DAG. Before executing this example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS section to match your environment.

```
# Airflow DAG Definition: AI Training Run
#
# Steps:
#
   1. Data prep job
   2. Dataset snapshot (for traceability)
   3. Training job
   4. Model snapshot (for versioning/baselining)
   5. Inference validation job
from airflow.utils.dates import days ago
from airflow.secrets import get connections
from airflow.models import DAG
from airflow.operators.python operator import PythonOperator
from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator
from airflow.contrib.kubernetes.pod import Resources
from airflow.contrib.kubernetes.volume import Volume
from airflow.contrib.kubernetes.volume mount import VolumeMount
##### DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####
## Define default args for DAG
ai_training_run_dag_default_args = {
    'owner': 'NetApp'
}
## Define DAG details
ai_training_run_dag = DAG(
    dag id='ai training run',
    default_args=ai_training_run_dag_default_args,
    schedule interval=None,
    start date=days ago(2),
    tags=['training']
)
## Define volume details (change values as necessary to match your environment)
# ONTAP system details
airflowConnectionName = 'ontap ai' # Name of the Airflow connection that contains connection
details for your ONTAP system's cluster admin account
verifySSLCert = False # Denotes whether or not to verify the SSL cert when calling the ONTAP
APT
# Dataset volume
dataset volume mount = VolumeMount(
    'dataset-volume',
    mount path='/mnt/dataset',
    sub path=None,
   read only=False
dataset volume config= {
    'persistentVolumeClaim': {
        'claimName': 'dataset-vol'
    }
}
dataset volume = Volume(name='dataset-volume', configs=dataset volume config)
dataset volume pv name = 'pvc-79e0855a-30a1-4f63-b34c-1029b1df49f6'
# Model volume
model volume mount = VolumeMount(
    'model-volume',
    mount path='/mnt/model',
    sub path=None,
   read only=False
)
model volume config= {
    'persistentVolumeClaim': {
        'claimName': 'airflow-model-vol'
}
```

```
model volume = Volume(name='model-volume', configs=model volume config)
model volume pv name = 'pvc-b3e7cb62-2694-45a3-a56d-9fad6b1262e4'
## Define job details (change values as needed)
# Data prep step
data_prep_step_container_image = "ubuntu:bionic"
data prep step command = ["echo", "'No data prep command entered'"] # Replace this echo command
with the data prep command that you wish to execute
data prep step resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to:
{'limit gpu': 1}
# Training step
train step container image = "nvcr.io/nvidia/tensorflow:20.07-tfl-py3"
train step command = ["echo", "'No training command entered'"] # Replace this echo command with
the training command that you wish to execute
train step resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to:
{'limit_gpu': 1}
# Inference validation step
validate step container image = "nvcr.io/nvidia/tensorflow:20.07-tfl-py3"
validate step command = ["echo", "'No inference validation command entered'"] # Replace this echo
command with the inference validation command that you wish to execute
validate step resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to:
{'limit qpu': 1}
# Define function that triggers the creation of a NetApp snapshot
def netappSnapshot(**kwargs) -> str :
    # Parse args
   for key, value in kwargs.items() :
       if key == 'pvName' :
           pvName = value
       elif key == 'verifySSLCert' :
           verifySSLCert = value
       elif key == 'airflowConnectionName' :
           airflowConnectionName = value
   # Install netapp ontap package
   import sys, subprocess
   result = subprocess.check output([sys.executable, '-m', 'pip', 'install', '--user', 'netapp-
ontap'])
   print(str(result).replace('\\n', '\n'))
    # Import needed functions/classes
   from netapp ontap import config as netappConfig
   from netapp ontap.host connection import HostConnection as NetAppHostConnection
   from netapp ontap.resources import Volume, Snapshot
   from datetime import datetime
   import ison
    # Retrieve ONTAP cluster admin account details from Airflow connection
   connections = get_connections(conn_id = airflowConnectionName)
   ontapConnection = connections[0]
                                      # Assumes that you only have one connection with the
specified conn id configured in Airflow
   ontapClusterAdminUsername = ontapConnection.login
   ontapClusterAdminPassword = ontapConnection.password
   ontapClusterMgmtHostname = ontapConnection.host
    # Configure connection to ONTAP cluster/instance
   netappConfig.CONNECTION = NetAppHostConnection(
       host = ontapClusterMgmtHostname,
       username = ontapClusterAdminUsername,
       password = ontapClusterAdminPassword,
       verify = verifySSLCert
   )
    # Convert pv name to ONTAP volume name
    # The following will not work if you specified a custom storagePrefix when creating your
```

```
Trident backend. If you specified a custom storagePrefix, you will need to update this
    #
       code to match your prefix.
   volumeName = 'trident %s' % pvName.replace("-", " ")
   print('\npv name: ', pvName)
   print('ONTAP volume name: ', volumeName)
    # Create snapshot; print API response
   volume = Volume.find(name = volumeName)
   timestamp = datetime.today().strftime("%Y%m%d %H%M%S")
    snapshot = Snapshot.from dict({
        'name': 'airflow %s' % timestamp,
        'comment': 'Snapshot created by a Apache Airflow DAG',
        'volume': volume.to dict()
   })
   response = snapshot.post()
   print("\nAPI Response:")
   print(response.http response.text)
    # Retrieve snapshot details
   snapshot.get()
    # Convert snapshot details to JSON string and print
   snapshotDetails = snapshot.to_dict()
   print("\nSnapshot Details:")
   print(json.dumps(snapshotDetails, indent=2))
    # Return name of newly created snapshot
   return snapshotDetails['name']
# Define DAG steps/workflow
with ai_training_run_dag as dag :
    # Define data prep step using Kubernetes Pod operator
(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator)
   data prep = KubernetesPodOperator(
        namespace='airflow',
        image=data prep step container image,
       cmds=data_prep_step_command,
       resources = data_prep_step_resources,
       volumes=[dataset_volume, model_volume],
       volume mounts=[dataset volume mount, model volume mount],
       name="ai-training-run-data-prep",
        task id="data-prep",
        is delete operator pod=True,
       hostnetwork=False
   )
    # Define step to take a snapshot of the dataset volume for traceability
   dataset snapshot = PythonOperator(
       task id='dataset-snapshot',
        python callable=netappSnapshot,
        op kwargs={
            'airflowConnectionName': airflowConnectionName,
            'pvName': dataset_volume_pv_name,
            'verifySSLCert': verifySSLCert
       }.
        dag=dag
   )
    # State that the dataset snapshot should be created after the data prep job completes
   data prep >> dataset snapshot
    # Define training step using Kubernetes Pod operator
(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator)
   train = KubernetesPodOperator(
       namespace='airflow',
       image=train step container image,
       cmds=train_step_command,
        resources = train step resources,
        volumes=[dataset volume, model volume],
```

```
volume mounts=[dataset volume mount, model volume mount],
       name="ai-training-run-train",
       task id="train",
       is delete operator pod=True,
       hostnetwork=False
   )
   # State that training job should be executed after dataset volume snapshot is taken
   dataset_snapshot >> train
   # Define step to take a snapshot of the model volume for versioning/baselining
   model snapshot = PythonOperator(
       task id='model-snapshot',
       python callable=netappSnapshot,
       op kwargs={
           'airflowConnectionName': airflowConnectionName,
            'pvName': model volume pv name,
           'verifySSLCert': verifySSLCert
       },
       dag=dag
   )
   # State that the model snapshot should be created after the training job completes
   train >> model snapshot
   # Define inference validation step using Kubernetes Pod operator
(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator)
   validate = KubernetesPodOperator(
       namespace='airflow',
       image=validate_step_container_image,
       cmds=validate step command,
       resources = validate_step_resources,
       volumes=[dataset volume, model volume],
       volume mounts=[dataset volume mount, model volume mount],
       name="ai-training-run-validate",
       task id="validate",
       is delete operator pod=True,
       hostnetwork=False
   )
   # State that inference validation job should be executed after model volume snapshot is taken
   model snapshot >> validate
```

Rapidly Clone a Dataset to create a Data Scientist Workspace

The example DAG outlined in this section implements a workflow that takes advantage of NetApp FlexClone technology to clone a dataset volume rapidly and efficiently and create a data scientist or developer workspace.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites:

- You must have created a connection in Airflow for your ONTAP system as outlined in Prerequisite #1 in the section "Implement an End-to-End AI Training Workflow with Built-in Traceability and Versioning."
- 2. You must have created a connection in Airflow for a host that is accessible via SSH and on which tridentctl, the NetApp Trident management utility, is installed and configured to point to your Kubernetes cluster.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI. The example screenshot that follows shows the creation of a connection for a specific host on which tridentctl is installed and configured. The following values are required:

- **Conn ID.** Unique name for the connection.
- Conn Type. Must be set to 'SSH'.

- Host. The host name or IP address of the host.
- Login. Username to use when accessing the host via SSH.
- **Password.** Password to use when accessing the host via SSH.

Create							
Conn Id *	tridentctl_jumphost						
Conn Type	SSH						
Host	10.61.188.110						
Username	ai						
Password							
Port							
Extra							
	Save Save and Add A	nother Save a	and Continue Ed	ting Cancel			

3. There must be an existing PersistentVolumeClaim (PVC) within your Kubernetes cluster that is tied to the volume that contains the dataset that you wish to clone.

DAG Definition

```
# Airflow DAG Definition: Create Data Scientist Workspace
#
# Steps:
# 1. Clone source volume
# 2. Import clone into Kubernetes using Trident
from airflow.utils.dates import days_ago
from airflow.secrets import get_connections
from airflow.models import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.contrib.operators.ssh_operator import SSHOperator
```

```
from datetime import datetime
##### DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####
## Define default args for DAG
create_data_scientist_workspace_dag_default_args = {
    'owner': 'NetApp'
}
## Define DAG details
create_data_scientist_workspace_dag = DAG(
    dag id='create data scientist workspace',
    default_args=create_data_scientist_workspace_dag_default_args,
    schedule interval=None,
    start date=days ago(2),
    tags=['dev-workspace']
)
## Define volume details (change values as necessary to match your environment)
# ONTAP system details
ontapAirflowConnectionName = 'ontap_ai' # Name of the Airflow connection that contains
connection details for your ONTAP system's cluster admin account
verifySSLCert = False # Denotes whether or not to verify the SSL cert when calling the ONTAP
APT
# Source volume details
sourcePvName = 'pvc-79e0855a-30a1-4f63-b34c-1029b1df49f6' # Name of Kubernetes PV corresponding
to source volume
# Clone volume details (details for the new clone that you will be creating)
timestampForVolumeName = datetime.today().strftime("%Y%m%d %H%M%S")
cloneVolumeName = 'airflow_clone_%s' % timestampForVolumeName
clonePvcNamespace = 'airflow' # Kubernetes namespace that you want the new clone volume to be
imported into
## Define tridentctl jumphost details (change values as necessary to match your environment)
tridentctlAirflowConnectionName = 'tridentctl jumphost' # Name of the Airflow connection of type
'ssh' that contains connection details for a jumphost on which tridentctl is installed
## Define Trident details
tridentStorageClass = 'ontap-flexvol'
                                       # Kubernetes StorageClass that you want to use when
importing the new clone volume
tridentNamespace = 'trident'
                               # Namespace that Trident is installed in
tridentBackend = 'ontap-flexvol'
                                 # Trident backend that you want to use when importing the new
clone volume
# Define function that clones a NetApp volume
def netappClone(task instance, **kwargs) -> str :
    # Parse args
    for key, value in kwargs.items() :
        if key == 'sourcePvName'
           sourcePvName = value
        elif key == 'verifySSLCert' :
            verifySSLCert = value
        elif key == 'airflowConnectionName' :
           airflowConnectionName = value
        elif key == 'cloneVolumeName' :
           cloneVolumeName = value
    # Install netapp ontap package
    import sys, subprocess
    result = subprocess.check output([sys.executable, '-m', 'pip', 'install', '--user', 'netapp-
ontap'])
   print(str(result).replace('\\n', '\n'))
    # Import needed functions/classes
```

```
from netapp ontap import config as netappConfig
    from netapp ontap.host connection import HostConnection as NetAppHostConnection
    from netapp_ontap.resources import Volume, Snapshot
    from datetime import datetime
    import json
    # Retrieve ONTAP cluster admin account details from Airflow connection
    connections = get connections (conn id = airflowConnectionName)
    ontapConnection = connections[0]
                                         # Assumes that you only have one connection with the
specified conn id configured in Airflow
    ontapClusterAdminUsername = ontapConnection.login
    ontapClusterAdminPassword = ontapConnection.password
    ontapClusterMqmtHostname = ontapConnection.host
    # Configure connection to ONTAP cluster/instance
    netappConfig.CONNECTION = NetAppHostConnection(
        host = ontapClusterMgmtHostname,
        username = ontapClusterAdminUsername,
        password = ontapClusterAdminPassword,
        verify = verifySSLCert
    )
    \ensuremath{\texttt{\#}} Convert pv name to ONTAP volume name
    # The following will not work if you specified a custom storagePrefix when creating your
       Trident backend. If you specified a custom storagePrefix, you will need to update this
    #
    # code to match your prefix.
    sourceVolumeName = 'trident_%s' % sourcePvName.replace("-", "_")
    print('\nSource pv name: ', sourcePvName)
    print('Source ONTAP volume name: ', sourceVolumeName)
    # Create clone
    sourceVolume = Volume.find(name = sourceVolumeName)
    cloneVolume = Volume.from dict({
        'name': cloneVolumeName,
        'svm': sourceVolume.to_dict()['svm'],
        'clone': {
            'is flexclone':'true',
            'parent volume': sourceVolume.to dict()
        },
        'nas': {
            'path': '/%s' % cloneVolumeName
        }
    })
    response = cloneVolume.post()
    print("\nAPI Response:")
    print(response.http_response.text)
    # Retrieve clone volume details
    cloneVolume.get()
    # Convert clone volume details to JSON string
    cloneVolumeDetails = cloneVolume.to dict()
    print("\nClone Volume Details:")
    print(json.dumps(cloneVolumeDetails, indent=2))
    # Create PVC name that resembles volume name and push as XCom for future use
task_instance.xcom_push(key = 'clone_pvc_name', value =
cloneVolumeDetails['name'].replace('_', '-'))
    # Return name of new clone volume
    return cloneVolumeDetails['name']
# Define DAG steps/workflow
with create data scientist workspace dag as dag :
    # Define step to clone source volume
    clone source = PythonOperator(
        task id='clone-source',
        provide context=True,
        python callable=netappClone,
```

```
op kwargs={
            'airflowConnectionName': ontapAirflowConnectionName,
            'sourcePvName': sourcePvName,
            'verifySSLCert': verifySSLCert,
            'cloneVolumeName': cloneVolumeName
        },
        dag=dag
   )
    # Define step to import clone into Kubernetes using Trident
   cloneVolumeName = "{{ task instance.xcom pull(task ids='clone-source', key='return value')
clonePvcName = "{{ task instance.xcom pull(task ids='clone-source', key='clone pvc name') }}"
   import command = '''cat << EOD > import-pvc-%s.yaml && tridentctl -n %s import volume %s %s -
f ./import-pvc-%s.yaml && rm -f import-pvc-%s.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: %s
 namespace: %s
spec:
 accessModes:
   - ReadWriteMany
  storageClassName: %s
EOD''' % (clonePvcName, tridentNamespace, tridentBackend, cloneVolumeName, clonePvcName,
clonePvcName, clonePvcName, clonePvcNamespace, tridentStorageClass)
   import clone = SSHOperator(
       task id="import-clone",
       command=import command,
       ssh conn id=tridentctlAirflowConnectionName
   )
    # State that the import step should be executed after the initial clone step completes
   clone source >> import clone
```

Trigger a SnapMirror Volume Replication Update

The example DAG outlined in this section implements a workflow that takes advantage of NetApp SnapMirror data replication technology to replicate the contents of a volume between different ONTAP clusters.

This pipeline can be used to replicate data of any type between ONTAP clusters that might or might not be located at different sites or in different regions. Potential use cases include the following:

- Replicating newly acquired sensor data gathered at the edge back to the core data center or to the cloud to be used for AI/ML model training or retraining.
- Replicating a newly trained or newly updated model from the core data center to the edge or to the cloud to be deployed as part of an inferencing application.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites.

- You must have created a connection in Airflow for your ONTAP system as outlined in Prerequisite #1 in the section "Implement an End-to-End AI Training Workflow with Built-in Traceability and Versioning."
- You must have already initiated an asynchronous SnapMirror relationship between the source and the destination volume according to standard configuration instructions. For details, refer to <u>official</u> <u>NetApp documentation</u>.

DAG Definition

```
# Airflow DAG Definition: Replicate Data - SnapMirror
# Steps:
#
   1. Trigger NetApp SnapMirror update
from airflow.utils.dates import days ago
from airflow.secrets import get connections
from airflow.models import DAG
from airflow.operators.python operator import PythonOperator
##### DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####
## Define default args for DAG
replicate data snapmirror dag default args = {
   'owner': 'NetApp'
}
## Define DAG details
replicate data snapmirror dag = DAG(
   dag id='replicate data snapmirror',
   default args=replicate data snapmirror dag default args,
   schedule interval=None,
   start date=days ago(2),
   tags=['data-movement']
)
## Define SnapMirror details (change values as necessary to match your environment)
# Destination ONTAP system details
airflowConnectionName = 'ontap ai' # Name of the Airflow connection that contains connection
details for the destination \ensuremath{\mathsf{ONTAP}} system's cluster admin account
verifySSLCert = False # Denotes whether or not to verify the SSL cert when calling the ONTAP
APT
# SnapMirror relationship details (existing SnapMirroer relationship for which you want to
trigger an update)
sourceSvm = "ailab"
sourceVolume = "sm"
destinationSvm = "ai221 data"
destinationVolume = "sm dest"
# Define function that triggers a NetApp SnapMirror update
def netappSnapMirrorUpdate(**kwargs) -> int :
    # Parse args
    for key, value in kwargs.items() :
       if key == 'sourceSvm' :
           sourceSvm = value
       elif key == 'sourceVolume' :
           sourceVolume = value
       elif key == 'destinationSvm' :
           destinationSvm = value
       elif key == 'destinationVolume' :
           destinationVolume = value
       elif key == 'verifySSLCert' :
           verifySSLCert = value
       elif key == 'airflowConnectionName' :
           airflowConnectionName = value
    # Install ansible package
```

```
import sys, subprocess, os
   print("Installing required Python modules:\n")
   result = subprocess.check_output([sys.executable, '-m', 'pip', 'install', '--user',
'ansible', 'netapp-lib'])
   print(str(result).replace('\\n', '\n'))
    # Retrieve ONTAP cluster admin account details from Airflow connection
   connections = get connections (conn id = airflowConnectionName)
   ontapConnection = connections[0]
                                       # Assumes that you only have one connection with the
specified conn id configured in Airflow
   ontapClusterAdminUsername = ontapConnection.login
   ontapClusterAdminPassword = ontapConnection.password
   ontapClusterMgmtHostname = ontapConnection.host
    # Define temporary Ansible playbook for triggering SnapMirror update
   snapMirrorPlaybookContent = """
- name: "Trigger SnapMirror Update"
 hosts: localhost
 tasks:
  - name: update snapmirror
   na ontap snapmirror:
     state: present
      source_path: '%s:%s'
     destination path: '%s:%s'
     hostname: '%s'
     username: '%s'
     password: '%s'
     https: 'yes'
     validate certs: '%s'""" % (sourceSvm, sourceVolume, destinationSvm, destinationVolume,
ontapClusterMgmtHostname,
       ontapClusterAdminUsername, ontapClusterAdminPassword, str(verifySSLCert))
   print("Creating temporary Ansible playbook.\n")
   snapMirrorPlaybookFilepath = "/home/airflow/snapmirror-update.yaml"
    snapMirrorPlaybookFile = open(snapMirrorPlaybookFilepath, "w")
   snapMirrorPlaybookFile.write(snapMirrorPlaybookContent)
   snapMirrorPlaybookFile.close()
   # Trigger SnapMirror update
   print("Executing Ansible playbook to trigger SnapMirror update:\n")
   try :
       result = subprocess.check output(['ansible-playbook', snapMirrorPlaybookFilepath])
       print(str(result).replace('\\n', '\n'))
    except Exception as e :
       print("Exception:", str(e).strip())
        print("Removing temporary Ansible playbook.")
        os.remove(snapMirrorPlaybookFilepath) # Remove temporary Ansible playbook before exiting
        raise
    # Remove temporary Ansible playbook before exiting
   print("Removing temporary Ansible playbook.\n")
   os.remove(snapMirrorPlaybookFilepath)
    # Return success code
   return 0
# Define DAG steps/workflow
with replicate data snapmirror dag as dag :
    # Define step to trigger a NetApp SnapMirror update
   trigger snapmirror = PythonOperator(
        task id='trigger-snapmirror',
       python callable=netappSnapMirrorUpdate,
        op_kwargs={
            'airflowConnectionName': airflowConnectionName,
            'verifySSLCert': verifySSLCert,
            'sourceSvm': sourceSvm,
            'sourceVolume': sourceVolume,
            'destinationSvm': destinationSvm,
            'destinationVolume': destinationVolume
```

Trigger a Cloud Sync Replication Update

The example DAG outlined in this section implements a workflow that takes advantage of NetApp Cloud Sync replication technology to replicate data to and from a variety of file and object storage platforms. Potential use cases include the following:

- Replicating newly acquired sensor data gathered at the edge back to the core data center or to the cloud to be used for AI/ML model training or retraining.
- Replicating a newly trained or newly updated model from the core data center to the edge or to the cloud to be deployed as part of an inferencing application.
- Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the training of an AI/ML model.
- Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML training environment for use in the training of an AI/ML model.
- Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage.
- Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance AI/ML training environment for use in the training of an AI/ML model.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites.

1. You must have created a connection in Airflow for the NetApp Cloud Sync API.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI. The example screenshot that follows shows the creation of a connection for the Cloud Sync API. The following values are required:

- **Conn ID.** Unique name for the connection.
- **Password.** Your Cloud Sync API refresh token.

	oata Profiling 🗸	Browse 🗸	Admin 🗸	Docs 🗸	About 🗸				 	05 20:21	
onno atlan .											
	eate]										
ist Create											
Conn Id *	cloud_sync										
Conn Type											
Host											
Schema											
Login											
Password			•••••								
Port											
Extra											
	0										
	Save Sav	ve and Add Anot	Save	and Continue E	diting	Cancel					

2. You must have already initiated the Cloud Sync relationship that you wish to trigger an update for. To initiate a relationship, visit <u>cloudsync.netapp.com</u>.

DAG Definition

```
# Airflow DAG Definition: Replicate Data - Cloud Sync
#
# Steps:
# 1. Trigger NetApp Cloud Sync update
from airflow.utils.dates import days_ago
from airflow.secrets import get_connections
from airflow.models import DAG
from airflow.operators.python_operator import PythonOperator
###### DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####
## Define default args for DAG
replicate_data_cloud_sync_dag_default_args = {
    'owner': 'NetApp'
```

```
}
## Define DAG details
replicate data cloud sync dag = DAG(
   dag id='replicate_data_cloud_sync',
   default args=replicate data cloud sync dag default args,
   schedule interval=None,
   start date=days ago(2),
   tags=['data-movement']
)
## Define Cloud Sync details (change values as necessary to match your environment)
# Cloud Sync refresh token details
airflowConnectionName = 'cloud sync' # Name of the Airflow connection that contains your Cloud
Sync refresh token
# Cloud Sync relationship details (existing Cloud Sync relationship for which you want to trigger
an update)
relationshipId = '5ed00996ca85650009a83db2'
## Function for triggering an update for a specific Cloud Sync relationship
def netappCloudSyncUpdate(**kwargs) :
    # Parse args
   printResponse = False # Default value
   keepCheckingUntilComplete = True # Default value
   for key, value in kwargs.items() :
       if key == 'relationshipId' :
           relationshipId = value
        elif key == 'printResponse' :
       printResponse = value
elif key == 'keepCheckingUntilComplete' :
           keepCheckingUntilComplete = value
        elif key == 'airflowConnectionName' :
           airflowConnectionName = value
    # Install requests module
    import sys, subprocess
    subprocess.run([sys.executable, '-m', 'pip', 'install', 'requests'])
    # Import needed modules
    import requests, json, time
   ## API response error class; objects of this class will be raised when an API resposne is not
as expected
   class APIResponseError(Exception) :
        '''Error that will be raised when an API response is not as expected'''
       pass
    ## Generic function for printing an API response
    def printAPIResponse(response: requests.Response) :
       print("API Response:")
       print("Status Code: ", response.status code)
       print("Header: ", response.headers)
       if response.text :
           print("Body: ", response.text)
    ## Function for obtaining access token and account ID for calling Cloud Sync API
   def netappCloudSyncAuth(refreshToken: str) :
        ## Step 1: Obtain limited time access token using refresh token
        # Define parameters for API call
       url = "https://netapp-cloud-account.auth0.com/oauth/token"
       headers = \{
            "Content-Type": "application/json"
```

```
data = {
            "grant type": "refresh token",
            "refresh token": refreshToken,
            "client id": "Mu0V1ywgYteI6w1MbD15fKfVIUrNXGWC"
        }
        # Call API to optain access token
        response = requests.post(url = url, headers = headers, data = json.dumps(data))
        # Parse response to retrieve access token
        try :
            responseBody = json.loads(response.text)
            accessToken = responseBody["access_token"]
        except :
            errorMessage = "Error obtaining access token from Cloud Sync API"
            raise APIResponseError(errorMessage, response)
        ## Step 2: Obtain account ID
        # Define parameters for API call
        url = "https://cloudsync.netapp.com/api/accounts"
        headers = {
            "Content-Type": "application/json",
            "Authorization": "Bearer " + accessToken
        }
        # Call API to obtain account ID
        response = requests.get(url = url, headers = headers)
        # Parse response to retrieve account ID
        try :
            responseBody = json.loads(response.text)
            accountId = responseBody[0]["accountId"]
        except :
            errorMessage = "Error obtaining account ID from Cloud Sync API"
            raise APIResponseError(errorMessage, response)
        # Return access token and account ID
        return accessToken, accountId
    ## Function for monitoring the progress of the latest update for a specific Cloud Sync
relationship
   def netappCloudSyncMonitor(refreshToken: str, relationshipId: str, keepCheckingUntilComplete:
bool = True, printProgress: bool = True, printResponses: bool = False) :
        # Step 1: Obtain access token and account ID for accessing Cloud Sync API
        try :
            accessToken, accountId = netappCloudSyncAuth(refreshToken = refreshToken)
        except APIResponseError as err:
            if printResponse :
                errorMessage = err.args[0]
                response = err.args[1]
                print(errorMessage)
                printAPIResponse (response)
            raise
        # Step 2: Obtain status of the latest update; optionally, keep checking until the latest
update has completed
        while True :
            # Define parameters for API call
            url = "https://cloudsync.netapp.com/api/relationships-v2/%s" % (relationshipId)
            headers = {
                "Accept": "application/json",
                "x-account-id": accountId,
                "Authorization": "Bearer " + accessToken
            }
            # Call API to obtain status of latest update
            response = requests.get(url = url, headers = headers)
```

```
# Print API response
            if printResponses :
                printAPIResponse (response)
            # Parse response to retrieve status of latest update
            try :
                responseBody = json.loads(response.text)
                latestActivityType = responseBody["activity"]["type"]
                latestActivityStatus = responseBody["activity"]["status"]
            except :
                errorMessage = "Error retrieving status of latest update from Cloud Sync API"
                raise APIResponseError(errorMessage, response)
            # End execution if the latest update is complete
            if latestActivityType == "Sync" and latestActivityStatus == "DONE" :
                if printProgress :
                    print("Success: Cloud Sync update is complete.")
                break
            # Print message re: progress
            if printProgress :
                print("Cloud Sync update is not yet complete.")
            # End execution if calling program doesn't want to monitor until the latest update
has completed
            if not keepCheckingUntilComplete :
                break
            # Sleep for 60 seconds before checking progress again
            print ("Checking again in 60 seconds...")
            time.sleep(60)
    # Retrieve Cloud Sync refresh token from Airflow connection
   connections = get connections(conn id = airflowConnectionName)
   cloudSyncConnection = connections[0]
                                          # Assumes that you only have one connection with the
specified conn id configured in Airflow
   refreshToken = cloudSyncConnection.password
    # Step 1: Obtain access token and account ID for accessing Cloud Sync API
   try :
       accessToken, accountId = netappCloudSyncAuth(refreshToken = refreshToken)
    except APIResponseError as err:
       errorMessage = err.args[0]
       response = err.args[1]
       print(errorMessage)
       if printResponse :
            printAPIResponse (response)
        raise
    # Step 2: Trigger Cloud Sync update
    # Define parameters for API call
   url = "https://cloudsync.netapp.com/api/relationships/%s/sync" % (relationshipId)
   headers = \{
        "Content-Type": "application/json",
        "Accept": "application/json",
        "x-account-id": accountId,
        "Authorization": "Bearer " + accessToken
    }
    # Call API to trigger update
   print("Triggering Cloud Sync update.")
   response = requests.put(url = url, headers = headers)
    # Check for API response status code of 202; if not 202, raise error
    if response.status code != 202 :
        errorMessage = "Error calling Cloud Sync API to trigger update."
        if printResponse :
            print(errorMessage)
```

```
printAPIResponse(response)
        raise APIResponseError(errorMessage, response)
    # Print API response
   if printResponse :
       print("Note: Status Code 202 denotes that update was successfully triggered.")
        printAPIResponse (response)
   print("Checking progress.")
   netappCloudSyncMonitor(refreshToken = refreshToken, relationshipId = relationshipId,
keepCheckingUntilComplete = keepCheckingUntilComplete, printResponses = printResponse)
# Define DAG steps/workflow
with replicate data cloud sync dag as dag :
    # Define step to trigger a NetApp Cloud Sync update
   trigger cloud sync = PythonOperator(
        task id='trigger-cloud-sync',
        python callable=netappCloudSyncUpdate,
        op kwargs={
            'airflowConnectionName': airflowConnectionName,
            'relationshipId': relationshipId
        },
        dag=dag
    )
```

Trigger an XCP Copy or Sync Operation

The example DAG outlined in this section implements a workflow that invokes NetApp XCP to quickly and reliably replicate data between NFS endpoints. Potential use cases include the following:

- Replicating newly acquired sensor data gathered at the edge back to the core data center or to the cloud to be used for AI/ML model training or retraining.
- Replicating a newly trained or newly updated model from the core data center to the edge or to the cloud to be deployed as part of an inferencing application.
- Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML training environment for use in the training of an AI/ML model.
- Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance AI/ML training environment for use in the training of an AI/ML model.

Prerequisites

For this DAG to function correctly, you must complete the following prerequisites.

 You must have created a connection in Airflow for a host that is accessible via SSH and on which NetApp XCP is installed and configured. For details regarding how to install and configure NetApp XCP, refer to the <u>NetApp XCP homepage</u> and the <u>official NetApp XCP documentation</u>.

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI. The example screenshot that follows shows the creation of a connection for a specific host on which NetApp XCP is installed and configured. The following values are required:

- **Conn ID.** Unique name for the connection.
- **Conn Type.** Must be set to SSH.
- **Host.** The host name or IP address of the host.
- Login. Username to use when accessing the host via SSH.
- Password. Password to use when accessing the host via SSH.

	eate]								
ist Create									
Conn Id *	xcp_host								
Conn Type	SSH								
Host	10.61.188.114								
Username	root								
Password	•••••								
Port									
Extra									
	Save Save	and Add Anoth	er Save	and Continue	Editing Cancel				

DAG Definition

```
# Airflow DAG Definition: Replicate Data - XCP
#
# Steps:
  1. Invoke NetApp XCP copy or sync operation
#
from airflow.utils.dates import days ago
from airflow.secrets import get_connections
from airflow.models import DAG
from airflow.operators.python_operator import PythonOperator
from airflow.contrib.operators.ssh operator import SSHOperator
from datetime import datetime
##### DEFINE PARAMETERS: Modify parameter values in this section to match your environment #####
## Define default args for DAG
replicate_data_xcp_dag_default_args = {
    'owner': 'NetApp'
}
```

```
## Define DAG details
replicate data xcp dag = DAG(
   dag id='replicate data xcp',
   default args=replicate data xcp_dag_default_args,
   schedule interval=None,
   start date=days ago(2),
   tags=['data-movement']
)
## Define xcp operation details (change values as necessary to match your environment and desired
operation)
# Define xcp operation to perform
xcpOperation = 'sync' # Must be 'copy' or 'sync'
# Define source and destination for copy operation
xcpCopySource = '192.168.200.41:/trident pvc 957318e1 9b73 4e16 b857 dca7819dd263'
xcpCopyDestination = '192.168.200.41:/trident_pvc_9e7607c2_29c8_4dbf_9b08_551ba72d0273'
# Define catalog id for sync operation
xcpSyncId = 'autoname_copy_2020-10-06_16.37.44.963391'
## Define xcp host details (change values as necessary to match your environment)
xcpAirflowConnectionName = 'xcp host' # Name of the Airflow connection of type 'ssh' that
contains connection details for a host on which xcp is installed, configured, and accessible
within $PATH
# Construct xcp command
xcpCommand = 'xcp help'
if xcpOperation == 'copy' :
   xcpCommand = 'xcp copy ' + xcpCopySource + ' ' + xcpCopyDestination
elif xcpOperation == 'sync' :
   xcpCommand = 'xcp sync -id ' + xcpSyncId
# Define DAG steps/workflow
with replicate_data_xcp_dag as dag :
    # Define step to invoke a NetApp XCP copy or sync operation
   invoke xcp = SSHOperator(
      task_id="invoke-xcp",
       command=xcpCommand,
       ssh conn id=xcpAirflowConnectionName
   )
```

Example Basic Trident Operations

This section includes examples of various operations that you may want to perform on your Kubernetes cluster.

Import an Existing Volume

If there are existing volumes on your NetApp storage system/platform that you want to mount on containers within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must import these volumes. You can use the Trident volume import functionality to import these volumes.

The example commands that follow show the importing of the same volume, named pb_fg_all, twice, once for each Trident backend that was created in the example in the section "Example Trident Backends for ONTAP AI Deployments", step 1. Importing the same volume twice in this manner enables you to mount the volume (an existing FlexGroup volume) multiple times across different LIFs, as described in the section "Example Trident Backends for ONTAP AI Deployments," step 1. For more information about

PVCs, see the <u>official Kubernetes documentation</u>. For more information about the volume import functionality, see the <u>Trident documentation</u>.

- **Note:** An accessModes value of ReadOnlyMany is specified in the example PVC spec files. This value means that multiple pods can mount these volumes at the same time and that access will be read-only. For more information about the accessMode field, see the official Kubernetes documentation.
- **Note:** The backend names that are specified in the following example import commands are highlighted for reference. These names correspond to the backends that were created in the example in the section "Example Trident Backends for ONTAP AI Deployments," step 1.
- **Note:** The StorageClass names that are specified in the following example PVC definition files are highlighted for reference. These names correspond to the StorageClasses that were created in the example in the section "Example Kubernetes StorageClasses for ONTAP AI Deployments," step 1.

<pre>\$ cat << EOF > ./pvc-import-pb_fg_all-iface1.yaml kind: PersistentVolumeClaim apiVersion: v1 metadata: name: pb-fg-all-iface1 namespace: default spec: accessModes: - ReadOnlyMany storageClassName: ontap-ai-flexgroups-retain-iface1 EOF \$ tridentct1 import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-import- iface1.yaml -n trident</pre>	pb_fg_all-
++++++	+
BACKEND UUID STATE MANAGED	PROTOCOL
++	+
default-pb-fg-all-ifacel-7d9f1 10 TiB ontap-ai-flexgroups-retain-ifacel b74cbddb-e0b8-40b7-b263-b6da6dec0bdd online true +	
<pre>\$ cat << EOF > ./pvc-import-pb_fg_all-iface2.yaml kind: PersistentVolumeClaim apiVersion: v1 metadata: name: pb-fg-all-iface2 namespace: default spec: accessModes: - ReadOnlyMany storageClassName: ontap-ai-flexgroups-retain-iface2 EOF \$ tridentctl import volume ontap-ai-flexgroups-iface2 pb_fg_all -f ./pvc-import- iface2.yaml -n trident ++</pre>	
	PROTOCOL
<pre>+ default-pb-fg-all-iface2-85aee 10 TiB ontap-ai-flexgroups-retain-iface2 61814d48-c770-436b-9cb4-cf7ee661274d online true ++</pre>	
<pre>\$ tridentctl get volume -n trident ++</pre>	-+
+ NAME SIZE STORAGE CLASS BACKEND UUID STATE MANAGED	PROTOCOL

```
-----+
| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-iface1 | file
                                                              b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true
| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-iface2 | file
                                                              61814d48-c770-436b-9cb4-cf7ee661274d | online | true |
_____+
$ kubectl get pvc
STORAGECLASS
NAME
             STATUS VOLUME
                                            CAPACITY
                                                      ACCESS MODES
                       AGE
STORAGECLASS AGE
pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1 10995116277760 ROX
ontap-ai-flexgroups-retain-iface1 25h
pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee
                                           10995116277760 ROX
ontap-ai-flexgroups-retain-iface2 25h
```

Provision a New Volume

You can use Trident to provision a new volume on your NetApp storage system or platform. The following example commands show the provisioning of a new FlexVol volume. In this example, the volume is provisioned using the StorageClass that was created in the example in the section "Example Kubernetes StorageClasses for ONTAP AI Deployments," step 2.

Note: An accessModes value of ReadWriteMany is specified in the following example PVC definition file. This value means that multiple containers can mount this PVC at the same time and that access is read-write. For more information about the accessMode field, see the <u>official</u> Kubernetes documentation.

```
$ cat << EOF > ./pvc-tensorflow-results.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: tensorflow-results
spec:
 accessModes:
   - ReadWriteManv
  resources:
   requests:
     storage: 1Gi
  storageClassName: ontap-ai-flexvols-retain
EOF
$ kubectl create -f ./pvc-tensorflow-results.yaml
persistentvolumeclaim/tensorflow-results created
$ kubectl get pvc

    NAME
    STATUS
    VOLUME

    ACCESS MODES
    STORAGECLASS
    AGE

    pb-fg-all-iface1
    Bound
    default-pb-fg-all-iface1-7d9f1

                                                                                  CAPACITY
                                                                                  10995116277760
ROX
              ontap-ai-flexgroups-retain-iface1 26h
pb-fg-all-iface2
                           Bound default-pb-fg-all-iface2-85aee
                                                                                 10995116277760
ROX ontap-ai-flexgroups-retain-iface2 26h
tensorflow-results
                          Bound default-tensorflow-results-2fd60 1073741824
RWX
              ontap-ai-flexvols-retain
                                                     2.5h
```

Example High-performance Jobs for ONTAP AI Deployments

This section includes examples of various high-performance jobs that can be executed when the NetApp AI Control Plane solution is deployed on an ONTAP AI pod.

Execute a Single-Node AI Workload

To execute a single-node AI and ML job in your Kubernetes cluster, perform the following tasks from the deployment jump host. With Trident, you can quickly and easily make a data volume, potentially containing petabytes of data, accessible to a Kubernetes workload. To make such a data volume

accessible from within a Kubernetes pod, simply specify a PVC, such as one of the PVCs that was created in the example in the section "Import an Existing Volume," in the pod definition. This step is a Kubernetes-native operation; no NetApp expertise is required.

- **Note:** This section assumes that you have already containerized (in the Docker container format) the specific AI and ML workload that you are attempting to execute in your Kubernetes cluster.
- 1. The following example commands show the creation of a Kubernetes job for a TensorFlow benchmark workload that uses the ImageNet dataset. For more information about the ImageNet dataset, see the ImageNet website.

This example job requests eight GPUs and therefore can run on a single GPU worker node that features eight or more GPUs. This example job could be submitted in a cluster for which a worker node featuring eight or more GPUs is not present or is currently occupied with another workload. If so, then the job remains in a pending state until such a worker node becomes available.

Additionally, to provide the required amount of storage bandwidth, the volume that contains the needed training data (the volume that was imported in the example in the section "Import an Existing Volume") is mounted twice within the pod that this job creates. See the highlighted lines in the following job definition. See the section "Example Trident Backends for ONTAP AI Deployments", step 1, for details about why you might want to mount the same data volume multiple times. The number of mounts that you need depends on the amount of bandwidth that the specific job requires.

The volume that was created in the example in the section "Provision a New Volume" is also mounted in the pod. These volumes are referenced in the job definition by using the names of the PVCs. For more information about Kubernetes jobs, see the <u>official Kubernetes documentation</u>.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this example job creates. The default size of the /dev/shm virtual volume that is automatically created by the Docker container runtime can sometimes be insufficient for TensorFlow's needs. Mounting an emptyDir volume as in the following example provides a sufficiently large /dev/shm virtual volume. For more information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job definition is given a securityContext > privileged value of true. This value means that the container effectively has root access on the host. This annotation is used in this case because the specific workload that is being executed requires root access. Specifically, a clear cache operation that the workload performs requires root access. Whether or not this privileged: true annotation is necessary depends on the requirements of the specific workload that you are executing.

```
$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml
apiVersion: batch/v1
kind: Job
metadata:
 name: netapp-tensorflow-single-imagenet
spec:
 backoffLimit: 5
  template:
   spec:
      volumes:
      - name: dshm
        emptyDir:
         medium: Memory
       name: testdata-iface1
       persistentVolumeClaim:
         claimName: pb-fg-all-iface1
       name: testdata-iface2
       persistentVolumeClaim:
         claimName: pb-fg-all-iface2
      - name: results
       persistentVolumeClaim:
         claimName: tensorflow-results
      containers:
      - name: netapp-tensorflow-pv2
       image: netapp/tensorflow-py2:19.03.0
```

<pre>command: ["python", "/netapp/scrip dataset_dir=/mnt/mount_0/dataset/imagenet"</pre>			"num_devices=8"]
nvidia.com/gpu: 8			
volumeMounts:			
- mountPath: /dev/shm			
name: dshm			
<pre>- mountPath: /mnt/mount_0</pre>			
name: testdata-ifacel			
<pre>- mountPath: /mnt/mount_1</pre>			
name: testdata-iface2			
- mountPath: /tmp			
name: results			
securityContext:			
privileged: true			
restartPolicy: Never			
EOF			
<pre>\$ kubectl create -f ./netapp-tensorflow-si</pre>		yaml	
job.batch/netapp-tensorflow-single-imagene	t created		
\$ kubectl get jobs			
NAME	COMPLETIONS	DURATION	AGE
netapp-tensorflow-single-imagenet	0/1	24s	24s

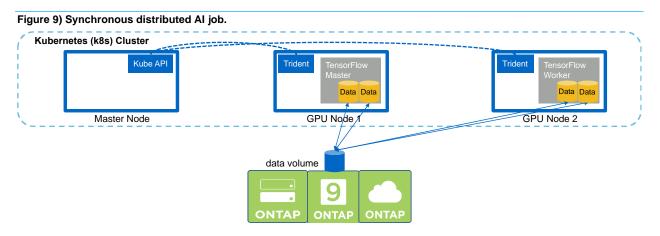
2. Confirm that the job that you created in step 1 is running correctly. The following example command confirms that a single pod was created for the job, as specified in the job definition, and that this pod is currently running on one of the GPU worker nodes.

\$ kubectl get po	ods -o wide					
NAME			READY	STATUS	RESTARTS	AGE
IP	NODE	NOMINATED NODE				
netapp-tensorflo	ow-single-imagen	et-m7x92	1/1	<mark>Running</mark>	0	Зm
10.233.68.61	10.61.218.154	<none></none>				

3. Confirm that the job that you created in step 1 completes successfully. The following example commands confirm that the job completed successfully.

\$ kubectl get jobs				
NAME	COMPLETIONS	DURATION	AGE	
netapp-tensorflow-single-imagenet	<mark>1/1</mark>	5m42s	10m	
\$ kubectl get pods				
NAME	READY	STATUS	RESTARTS	AGE
netapp-tensorflow-single-imagenet-m7x92	0/1	Completed	0	11m
<pre>\$ kubectl logs netapp-tensorflow-single-imagene</pre>	t-m7x92			
[netapp-tensorflow-single-imagenet-m7x92:00008] at line 702			2	-
[netapp-tensorflow-single-imagenet-m7x92:00008] at line 711	PMIX ERROR: NC	D-PERMISSION	S in file go	ds_dstore.c
Total images/sec = 6530.59125				
============ Clean Cache !!! =================================	====			
mpirun -allow-run-as-root -np 1 -H localhost:1	bash -c 'sync;	echo 1 > $/p$	roc/sys/vm/c	drop_caches'
mpirun -allow-run-as-root -np 8 -H localhost:8	-bind-to none -	-map-by slot	-x NCCL_DEE	BUG=INFO -x
LD_LIBRARY_PATH -x PATH python	, , ,	4.6.3	, ,	
/netapp/tensorflow/benchmarks_190205/scripts/tf				
model=resnet50batch_size=256device=gpu				
num_inter_threads=48variable_update=horovod				
nodistortionsnum_gpus=1data_format=NCHW - data name=imagenetuse datasets=Truedata d				
datasets parallel interleave cycle length=10				100
num mounts=2mount prefix=/mnt/mount %ddat				1126
datasets use prefetch=Truedatasets num priva				
/tmp/20190814 105450 tensorflow horovod rdma re				rt fn16 r10
m2_nockpt.txt 2>&1				

4. **Optional:** Clean up job artifacts. The following example commands show the deletion of the job object that was created in step 1.


Note: When you delete the job object, Kubernetes automatically deletes any associated pods.

<pre>\$ kubectl get jobs</pre>				
NAME	COMPLETIONS	DURATION	AGE	
netapp-tensorflow-single-imagenet	1/1	5m42s	10m	
<pre>\$ kubectl get pods</pre>				
NAME	READY	STATUS	RESTARTS	AGE
netapp-tensorflow-single-imagenet-m7x92	0/1	Completed	0	11m
\$ kubectl delete job netapp-tensorflow-single-in	nagenet			
job.batch "netapp-tensorflow-single-imagenet" de	eleted			
\$ kubectl get jobs				
No resources found.				
\$ kubectl get pods				
No resources found.				

Execute a Synchronous Distributed AI Workload

To execute a synchronous multinode AI and ML job in your Kubernetes cluster, perform the following tasks on the deployment jump host. This process enables you to take advantage of data that is stored on a NetApp volume and to use more GPUs than a single worker node can provide. See Figure 9 for a visualization.

Note: Synchronous distributed jobs can help increase performance and training accuracy compared with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs versus asynchronous jobs is outside the scope of this document.

1. The following example commands show the creation of one worker that participates in the synchronous distributed execution of the same TensorFlow benchmark job that was executed on a single node in the example in the section "Execute a Single-Node AI Workload." In this specific example, only a single worker is deployed because the job is executed across two worker nodes.

This example worker deployment requests eight GPUs and thus can run on a single GPU worker node that features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize performance, you might want to increase this number to be equal to the number of GPUs that your worker nodes feature. For more information about Kubernetes deployments, see the <u>official Kubernetes documentation</u>.

A Kubernetes deployment is created in this example because this specific containerized worker would never complete on its own. Therefore, it doesn't make sense to deploy it by using the Kubernetes job construct. If your worker is designed or written to complete on its own, then it might make sense to use the job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of true. This value means that the pod uses the host worker node's networking stack instead of the virtual networking stack that Kubernetes usually creates for each pod. This annotation is used in this case because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload in a synchronous distributed manner. Therefore, it requires access to the host networking stack. A

discussion about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or not this hostNetwork: true annotation is necessary depends on the requirements of the specific workload that you are executing. For more information about the hostNetwork field, see the <u>official</u> <u>Kubernetes documentation</u>.

```
$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: netapp-tensorflow-multi-imagenet-worker
spec:
  replicas: 1
  selector:
   matchLabels:
     app: netapp-tensorflow-multi-imagenet-worker
  template:
   metadata:
     labels:
       app: netapp-tensorflow-multi-imagenet-worker
    spec:
     hostNetwork: true
     volumes:
      - name: dshm
       emptyDir:
         medium: Memory
      - name: testdata-iface1
       persistentVolumeClaim:
         claimName: pb-fg-all-iface1
      - name: testdata-iface2
       persistentVolumeClaim:
         claimName: pb-fg-all-iface2
      - name: results
       persistentVolumeClaim:
         claimName: tensorflow-results
      containers:
      - name: netapp-tensorflow-py2
       image: netapp/tensorflow-py2:19.03.0
       command: ["bash", "/netapp/scripts/start-slave-multi.sh", "22122"]
        resources:
         limits:
           nvidia.com/gpu: 8
        volumeMounts:
        - mountPath: /dev/shm
         name: dshm
        - mountPath: /mnt/mount 0
         name: testdata-iface1
        - mountPath: /mnt/mount 1
         name: testdata-iface2
        - mountPath: /tmp
         name: results
        securityContext:
         privileged: true
EOF
$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml
deployment.apps/netapp-tensorflow-multi-imagenet-worker created
$ kubectl get deployments
                                          DESIRFD
                                                   CURRENT
                                                             UP-TO-DATE AVATLABLE
NAME
                                                                                        AGE
netapp-tensorflow-multi-imagenet-worker
                                          1
                                                    1
                                                               1
                                                                            1
                                                                                        4s
```

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following example commands confirm that a single worker pod was created for the deployment, as indicated in the deployment definition, and that this pod is currently running on one of the GPU worker nodes.

```
$ kubectl get pods -o wide
NAME
                                                          READY
                                                                  STATUS
                                                                            RESTARTS
                                                                                       AGE
ΙP
               NODE
                               NOMINATED NODE
netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725
                                                         1/1
                                                                  Running
                                                                            0
                                                                                       60s
10.61.218.154 10.61.218.154 <none>
$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725
```

22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the synchronous multinode job. The following example commands create one master that kicks off, participates in, and tracks the synchronous distributed execution of the same TensorFlow benchmark job that was executed on a single node in the example in the section "Execute a Single-Node Al Workload."

This example master job requests eight GPUs and thus can run on a single GPU worker node that features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize performance, you might want to increase this number to be equal to the number of GPUs that your worker nodes feature.

Note: The master pod that is specified in this example job definition is given a hostNetwork value of true, just as the worker pod was given a hostNetwork value of true in step 1. See step 1 for details about why this value is necessary.

```
$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml
apiVersion: batch/v1
kind: Job
metadata:
 name: netapp-tensorflow-multi-imagenet-master
spec:
 backoffLimit: 5
  template:
    spec:
     hostNetwork: true
     volumes:
      - name: dshm
       emptyDir:
         medium: Memory
      - name: testdata-iface1
       persistentVolumeClaim:
         claimName: pb-fg-all-iface1
      - name: testdata-iface2
       persistentVolumeClaim:
         claimName: pb-fg-all-iface2
      - name: results
       persistentVolumeClaim:
         claimName: tensorflow-results
      containers:
      - name: netapp-tensorflow-py2
       image: netapp/tensorflow-py2:19.03.0
        command: ["python", "/netapp/scripts/run.py", "--
dataset dir=/mnt/mount 0/dataset/imagenet", "--port=22122", "--num devices=16", "--
dgx version=dgx1", "--nodes=10.61.218.152,10.61.218.154"]
       resources:
         limits:
            nvidia.com/gpu: 8
        volumeMounts:
        - mountPath: /dev/shm
         name: dshm
        - mountPath: /mnt/mount 0
         name: testdata-iface1
        - mountPath: /mnt/mount 1
         name: testdata-iface2
        - mountPath: /tmp
         name: results
        securityContext:
         privileged: true
      restartPolicy: Never
EOF
$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml
job.batch/netapp-tensorflow-multi-imagenet-master created
$ kubectl get jobs
NAME
                                          COMPLETIONS DURATION
                                                                   AGE
netapp-tensorflow-multi-imagenet-master 0/1
                                                        25s
                                                                    255
```

4. Confirm that the master job that you created in step 3 is running correctly. The following example command confirms that a single master pod was created for the job, as indicated in the job definition, and that this pod is currently running on one of the GPU worker nodes. You should also see that the worker pod that you originally saw in step 1 is still running and that the master and worker pods are running on different nodes.

\$ kubectl get pods -o wide					
NAME		READY	STATUS	RESTARTS	AGE
IP NODE	NOMINATED NODE				
netapp-tensorflow-multi-imag	enet-master-ppwwj	1/1	<mark>Running</mark>	0	45s
10.61.218.152 10.61.218.15	<pre>chone></pre>				
netapp-tensorflow-multi-imag	enet-worker-654fc7f486-v6725	1/1	Running	0	26m
10.61.218.154 10.61.218.15	l <none></none>				

5. Confirm that the master job that you created in step 3 completes successfully. The following example commands confirm that the job completed successfully.

\$ kubectl get jobs					
NAME	COMPLETIONS	DURATION	AGE		
netapp-tensorflow-multi-imagenet-master	<mark>1/1</mark>	5m50s	9m18s		
\$ kubectl get pods					
NAME		READY	STATUS	RESTARTS	AGE
netapp-tensorflow-multi-imagenet-master-		0/1	Completed	0	9m38s
netapp-tensorflow-multi-imagenet-worker-			Running	0	35m
<pre>\$ kubectl logs netapp-tensorflow-multi-i</pre>					
[10.61.218.152:00008] WARNING: local pro		andled she	ll:unknown a	ssuming basl	h
rm: cannot remove '/lib': Is a directory					
[10.61.218.154:00033] PMIX ERROR: NO-PER					
[10.61.218.154:00033] PMIX ERROR: NO-PER [10.61.218.152:00008] PMIX ERROR: NO-PER					
[10.61.218.152:00008] PMIX ERROR: NO-PER [10.61.218.152:00008] PMIX ERROR: NO-PER					
Total images/sec = 12881.33875	MISSIONS IN III	e gus_ustoi	le.c at line	/	
=================== Clean Cache !!! =======					
mpirun -allow-run-as-root -np 2 -H 10.61		1.218.154:1	l -mca pml ol	bl -mca btl	^openib
-mca btl tcp if include enpls0f0 -mca pl					
'sync; echo 1 > /proc/sys/vm/drop caches			1		
	=				
mpirun -allow-run-as-root -np 16 -H 10.6					
NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PA					
enp1s0f0 -x NCCL_IB_HCA=mlx5 -x NCCL_NET					
NCCL_SOCKET_IFNAME=enp5s0.3091,enp12s0.3					
-mca orte_base_help_aggregate 0 -mca plm					on
/netapp/tensorflow/benchmarks_190205/scr					, ,
model=resnet50batch_size=256device					
<pre>num_inter_threads=48variable_update=h nodistortionsnum gpus=1data format</pre>					-
data name=imagenetuse datasets=True -					
datasets parallel interleave cycle lengt					
num mounts=2mount prefix=/mnt/mount %					
datasets use prefetch=Truedatasets nu	m private threa	ds=4hord	ovod device=	ג נוסם >	
/tmp/20190814 161609 tensorflow horovod	rdma resnet50 c	pu 16 256 k	500 imagene	t nodistort	fp16 r10
m2 nockpt.txt 2>&1	_ ` ` `	• • _ •			

6. Delete the worker deployment when you no longer need it. The following example commands show the deletion of the worker deployment object that was created in step 1.

Note: When you delete the worker deployment object, Kubernetes automatically deletes any associated worker pods.

<pre>\$ kubectl get deployments</pre>							
NAME	DESIRED	CURRENT	UP-1	CO-DATE	AVAI	LABLE .	AGE
netapp-tensorflow-multi-imagenet-worker	1	1	1		1		43m
\$ kubectl get pods							
NAME			READY	STATUS	Ι	RESTARTS	AGE
netapp-tensorflow-multi-imagenet-master-	ррwwj		0/1	Complet	ed (0	17m
netapp-tensorflow-multi-imagenet-worker-	654fc7f486	-v6725	1/1	Running	g (0	43m
\$ kubectl delete deployment netapp-tenso	rflow-mult	i-imagene	et-worke	er			
deployment.extensions "netapp-tensorflow	-multi-ima	genet-woi	cker" de	eleted			
<pre>\$ kubectl get deployments</pre>							

```
No resources found.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwj 0/1 Completed 0 18m
```

- 7. **Optional:** Clean up the master job artifacts. The following example commands show the deletion of the master job object that was created in step 3.
 - Note: When you delete the master job object, Kubernetes automatically deletes any associated master pods.

```
$ kubectl get jobs
NAME
                                         COMPLETIONS
                                                       DURATION
                                                                  AGE
netapp-tensorflow-multi-imagenet-master
                                         1/1
                                                       5m50s
                                                                  19m
$ kubectl get pods
                                               READY STATUS
                                                                  RESTARTS
                                                                             AGE
NAME
                                                       Completed 0
netapp-tensorflow-multi-imagenet-master-ppwwj
                                              0/1
                                                                              19m
$ kubectl delete job netapp-tensorflow-multi-imagenet-master
job.batch "netapp-tensorflow-multi-imagenet-master" deleted
$ kubectl get jobs
No resources found.
$ kubectl get pods
No resources found.
```

Performance Testing

We performed a simple performance comparison as part of the creation of this solution. We executed several standard NetApp benchmarking jobs by using Kubernetes, and we compared the benchmark results with executions that were performed by using a simple Docker run command. We did not see any noticeable differences in performance. Therefore, we concluded that the use of Kubernetes to orchestrate containerized jobs does not adversely affect performance. Table 3 lists the results of our performance comparison.

Table 3) Performance comparison results.			
Benchmark	Dataset	Docker Run (images/sec)	Kubernetes (images/sec)
Single-node TensorFlow	Synthetic data	6,667.2475	6,661.93125
Single-node TensorFlow	ImageNet	6,570.2025	6,530.59125
Synchronous distributed two-node TensorFlow	Synthetic data	13,213.70625	13,218.288125
Synchronous distributed two-node TensorFlow	ImageNet	12,941.69125	12,881.33875

Conclusion

Companies and organizations of all sizes and across all industries are turning to artificial intelligence (AI), machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative products and services, and to get an edge in an increasingly competitive marketplace. As organizations increase their use of AI, ML, and DL, they face many challenges, including workload scalability and data availability. These challenges can be addressed through the use of the NetApp AI Control Plane, NetApp's full stack AI data and experiment management solution.

This solution enables you to rapidly clone a data namespace just as you would a Git repo. Additionally, it allows you to define and implement AI, ML, and DL training workflows that incorporate the near-instant creation of data and model baselines for traceability and versioning. With this solution, you can trace every single model training run back to the exact dataset(s) that the model was trained and/or validated with. Lastly, this solution enables you to swiftly provision Jupyter Notebook workspaces with access to massive datasets.

Because this solution is targeted towards data scientists and data engineers, no NetApp or NetApp ONTAP expertise is required. With this solution, data management functions can be executed using simple and familiar tools and interfaces. Furthermore, this solution utilizes fully open-source and free components. Therefore, if you already have NetApp storage in your environment, you can implement this solution today. If you want to test drive this solution but you do not have already have NetApp storage, visit <u>cloud.netapp.com</u>, and you can be up and running with a cloud-based NetApp storage solution in no time.

Acknowledgments

- David Arnette, Technical Marketing Engineer, NetApp
- Sung-Han Lin, Performance Analyst, NetApp
- Steve Guhr, Solutions Engineer, NetApp
- Muneer Ahmad, Solutions Architect, NetApp
- Santosh Rao, Senior Technical Director, NetApp
- Bala Ramesh, Technical Marketing Engineer, NetApp
- George Tehrani, Product Manager, NetApp

Where to Find Additional Information

To learn more about the information that is described in this document, see the following resources:

- NVIDIA DGX-1 servers:
 - NVIDIA DGX-1 servers <u>https://www.nvidia.com/en-us/data-center/dgx-1/</u>
 - NVIDIA Tesla V100 Tensor Core GPU <u>https://www.nvidia.com/en-us/data-center/tesla-v100/</u>
 - NVIDIA GPU Cloud (NGC) <u>https://www.nvidia.com/en-us/gpu-cloud/</u>
- NetApp AFF systems:
 - AFF datasheet <u>https://www.netapp.com/us/media/ds-3582.pdf</u>
 - NetApp FlashAdvantage for AFF <u>https://www.netapp.com/us/media/ds-3733.pdf</u>
 - ONTAP 9.x documentation <u>http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286</u>
 - NetApp FlexGroup technical report <u>https://www.netapp.com/us/media/tr-4557.pdf</u>
- NetApp persistent storage for containers:
 - NetApp Trident <u>https://netapp.io/persistent-storage-provisioner-for-kubernetes/</u>
- NetApp Interoperability Matrix:
 - NetApp Interoperability Matrix Tool http://support.netapp.com/matrix
- ONTAP AI networking:
 - Cisco Nexus 3232C Switches https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html

- Mellanox Spectrum 2000 series switches <u>http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000</u>
- ML framework and tools:
 - DALI
 <u>https://github.com/NVIDIA/DALI</u>
 - TensorFlow: An Open-Source Machine Learning Framework for Everyone <u>https://www.tensorflow.org/</u>
 - Horovod: Uber's Open-Source Distributed Deep Learning Framework for TensorFlow <u>https://eng.uber.com/horovod/</u>
 - Enabling GPUs in the Container Runtime Ecosystem <u>https://devblogs.nvidia.com/gpu-containers-runtime/</u>
 - Docker <u>https://docs.docker.com</u>
 - Kubernetes
 <u>https://kubernetes.io/docs/home/</u>
 - NVIDIA DeepOps <u>https://github.com/NVIDIA/deepops</u>
 - Kubeflow
 <u>http://www.kubeflow.org/</u>
 - Jupyter Notebook Server <u>http://www.jupyter.org/</u>
 - Dataset and benchmarks:
 - ImageNet <u>http://www.image-net.org/</u>
 - COCO <u>http://cocodataset.org/</u>
 - Cityscapes <u>https://www.cityscapes-dataset.com/</u>
 - nuScenes
 <u>www.nuscenes.org</u>
 - SECOND: Sparsely Embedded Convolutional Detection model <u>https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf</u>
 - TensorFlow benchmarks <u>https://github.com/tensorflow/benchmarks</u>

Version History

Version	Date	Document Version History
Version 1.0	September 2019	Initial release.
Version 2.0	September 2019	Added sections on triggering Snapshot copies/FlexClone volumes using kubectl commands (removed from document in version 3.0); added section on Kubeflow ("NVIDIA DeepOps" and "Kubeflow."*); added Figure 9; and updated DeepOps troubleshooting instructions.
Version 3.0	March 2020	Added section on creating a Snapshot from within a Jupyter Notebook ("Create a Snapshot of an ONTAP Volume from Within a Jupyter Notebook"); added example Kubeflow pipelines ("Create a Kubeflow Pipeline to Execute an End-to- End AI Training Workflow with Built-in Traceability and

Version	Date	Document Version History
		Versioning" and "Create a Kubeflow Pipeline to Rapidly Clone a Dataset for a Data Scientist Workspace"); added NetApp Snapshot copies and NetApp FlexClone technology descriptions to the "Concepts and Components" section; and reordered sections within document; and removed sections on triggering Snapshot copies/FlexClone volumes using kubectl commands (due to Kubernetes API changes).
Version 4.0	May 2020	Added example Kubeflow pipeline ("Create a Kubeflow Pipeline to Trigger a SnapMirror Volume Replication Update"); added NetApp SnapMirror technology description ("NetApp SnapMirror Data Replication Technology"); and updated Abstract and Introduction.
Version 5.0	June 2020	Added example Jupyter Notebook ("Trigger a Cloud Sync Replication Update from Within a Jupyter Notebook"); added example Kubeflow pipeline ("Create a Kubeflow Pipeline to Trigger a Cloud Sync Replication Update"); updated example Kubeflow pipeline to use Trident-based annotation cloning method ("Create a Kubeflow Pipeline to Rapidly Clone a Dataset for a Data Scientist Workspace"); added NetApp Cloud Sync technology description ("NetApp Cloud Sync"); added DeepOps option for deploying Trident ("Install Trident"); fixed formatting error in the section "Create a Kubeflow Pipeline to Trigger a SnapMirror Volume Replication Update;" and removed all references to NKS.
Version 6.0	October 2020	Added Apache Airflow sections (sections "Apache Airflow," "Apache Airflow Deployment," and "Example Apache Airflow Workflows"); added references to Git repo containing example Kubeflow pipelines and Jupyter Notebooks ("Example Kubeflow Operations and Tasks"); added NetApp XCP to "Concepts and Components;" reworded introduction.

Refer to the <u>Interoperability Matrix Tool (IMT)</u> on the NetApp Support site to validate that the exact product and feature versions described in this document are supported for your specific environment. The NetApp IMT defines the product components and versions that can be used to construct configurations that are supported by NetApp. Specific results depend on each customer's installation in accordance with published specifications.

Copyright Information

Copyright © 2020 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide, limited irrevocable license to use the Data only in connection with and in support of the U.S. Government contract under which the Data was delivered. Except as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp, Inc. United States Government license rights for the Department of Defense are limited to those rights identified in DFARS clause 252.227-7015(b).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at <u>http://www.netapp.com/TM</u> are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.

TR-4798-0720

NetApp[®]