
 

 

  

Abstract 

As organizations increase their use of artificial intelligence (AI), they face many challenges, 

including workload scalability and data availability. This document demonstrates how to 

address these challenges through the use of NetApp® AI Control Plane, a solution that pairs 

NetApp data management capabilities with popular open-source tools and frameworks that 

are used by data scientists and data engineers. In this document, we show you how to 

rapidly clone a data namespace just as you would a Git repo. We demonstrate how to define 

and implement AI training workflows that incorporate the near-instant creation of data and 

model baselines for traceability and versioning. We also show how to seamlessly replicate 

data across sites and regions and swiftly provision Jupyter Notebook workspaces with 

access to massive datasets. 
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Introduction 

Companies and organizations of all sizes and across many industries are turning to artificial intelligence 

(AI), machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative 

products and services, and to get an edge in an increasingly competitive marketplace. As organizations 

increase their use of AI, ML, and DL, they face many challenges, including workload scalability and data 

availability. This document demonstrates how you can address these challenges by using the NetApp AI 

Control Plane, a solution that pairs NetApp data management capabilities with popular open-source tools 

and frameworks. 

This report shows you how to rapidly clone a data namespace just as you would a Git repo. It also shows 

you how to seamlessly replicate data across sites and regions to create a cohesive and unified AI/ML/DL 

data pipeline. Additionally, it walks you through the defining and implementing of AI, ML, and DL training 

workflows that incorporate the near-instant creation of data and model baselines for traceability and 

versioning. With this solution, you can trace every model training run back to the exact dataset that was 

used to train and/or validate the model. Lastly, this document shows you how to swiftly provision Jupyter 

Notebook workspaces with access to massive datasets. 

The NetApp AI Control Plane is targeted towards data scientists and data engineers, and, thus, minimal 

NetApp or NetApp ONTAP® expertise is required. With this solution, data management functions can be 

executed using simple and familiar tools and interfaces. If you already have NetApp storage in your 

environment, you can test drive the NetApp AI Control plane today. If you want to test drive the solution 

but you do not have already have NetApp storage, visit cloud.netapp.com, and you can be up and 

running with a cloud-based NetApp storage solution in minutes. 

Figure 1) Solution visualization. 
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Concepts and Components 

Artificial Intelligence 

AI is a computer science discipline in which computers are trained to mimic the cognitive functions of the 

human mind. AI developers train computers to learn and to solve problems in a manner that is similar to, 

or even superior to, humans. Deep learning and machine learning are subfields of AI. Organizations are 

increasingly adopting AI, ML, and DL to support their critical business needs. Some examples are as 

follows: 

• Analyzing large amounts of data to unearth previously unknown business insights 

• Interacting directly with customers by using natural language processing 

• Automating various business processes and functions 

Modern AI training and inference workloads require massively parallel computing capabilities. Therefore, 

GPUs are increasingly being used to execute AI operations because the parallel processing capabilities 

of GPUs are vastly superior to those of general-purpose CPUs. 

Containers 

Containers are isolated user-space instances that run on top of a shared host operating system kernel. 

The adoption of containers is increasing rapidly. Containers offer many of the same application 

sandboxing benefits that virtual machines (VMs) offer. However, because the hypervisor and guest 

operating system layers that VMs rely on have been eliminated, containers are far more lightweight. See 

Figure 2 for a visualization. 

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly 

with an application. The most commonly used container packaging format is the Docker container. An 

application that has been containerized in the Docker container format can be executed on any machine 

that can run Docker containers. This is true even if the application’s dependencies are not present on the 

machine because all dependencies are packaged in the container itself. For more information, visit the 

Docker website. 

Figure 2) Virtual machines versus containers. 
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Kubernetes 

Kubernetes is an open source, distributed, container orchestration platform that was originally designed 

by Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes 

enables the automation of deployment, management, and scaling functions for containerized applications. 

In recent years, Kubernetes has emerged as the dominant container orchestration platform. Although 

other container packaging formats and run times are supported, Kubernetes is most often used as an 

orchestration system for Docker containers. For more information, visit the Kubernetes website. 

NetApp Trident 

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly 

simplifies the creation, management, and consumption of persistent storage for Kubernetes workloads. 

Trident, itself a Kubernetes-native application, runs directly within a Kubernetes cluster. With Trident, 

Kubernetes users (developers, data scientists, Kubernetes administrators, and so on) can create, 

manage, and interact with persistent storage volumes in the standard Kubernetes format that they are 

already familiar with. At the same time, they can take advantage of NetApp advanced data management 

capabilities and a data fabric that is powered by NetApp technology. Trident abstracts away the 

complexities of persistent storage and makes it simple to consume. For more information, visit the Trident 

website. 

NVIDIA DeepOps 

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of 

GPU server clusters according to best practices. DeepOps is modular and can be used for various 

deployment tasks. For this document and the validation exercise that it describes, DeepOps is used to 

deploy a Kubernetes cluster that consists of GPU server worker nodes. For more information, visit the 

DeepOps website. 

Kubeflow 

Kubeflow is an open source AI and ML toolkit for Kubernetes that was originally developed by Google. 

The Kubeflow project makes deployments of AI and ML workflows on Kubernetes simple, portable, and 

scalable. Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on what 

they know best―data science. See Figure 3 for a visualization. Kubeflow has been gaining significant 

traction as enterprise IT departments have increasingly standardized on Kubernetes. For more 

information, visit the Kubeflow website. 

Kubeflow Pipelines 

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for 

defining and deploying portable and scalable AI and ML workflows. For more information, see the official 

Kubeflow documentation. 

Jupyter Notebook Server 

A Jupyter Notebook Server is an open source web application that allows data scientists to create wiki-

like documents called Jupyter Notebooks that contain live code as well as descriptive test. Jupyter 

Notebooks are widely used in the AI and ML community as a means of documenting, storing, and sharing 

AI and ML projects. Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on 

Kubernetes. For more information on Jupyter Notebooks, visit the Jupyter website. For more information 

about Jupyter Notebooks within the context of Kubeflow, see the official Kubeflow documentation. 

https://kubernetes.io/
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://github.com/NVIDIA/deepops
http://www.kubeflow.org/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://www.jupyter.org/
https://www.kubeflow.org/docs/components/jupyter/
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Figure 3) Kubeflow visualization. 
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pipeline workflows, but it is not limited to these types of workflows. The Airflow project was started by 
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Apache Software Foundation. Airflow is written in Python, Airflow workflows are created via Python 

scripts, and Airflow is designed under the principle of "configuration as code.” Many enterprise Airflow 

users now run Airflow on top of Kubernetes. 

Directed Acyclic Graphs (DAGs) 

In Airflow, workflows are called Directed Acyclic Graphs (DAGs). DAGs are made up of tasks that are 

executed in sequence, in parallel, or a combination of the two, depending on the DAG definition. The 

Airflow scheduler executes individual tasks on an array of workers, adhering to the task-level 

dependencies that are specified in the DAG definition. DAGs are defined and created via Python scripts. 

NetApp ONTAP 9 

NetApp ONTAP 9 is the latest generation of storage management software from NetApp that enables 

businesses like yours to modernize infrastructure and to transition to a cloud-ready data center. With 

industry-leading data management capabilities, ONTAP enables you to manage and protect your data 

with a single set of tools regardless of where that data resides. You can also move data freely to 
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data management, accelerate and protect your critical data, and future-proof your infrastructure across 

hybrid cloud architectures. 
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Simplify Data Management 

Data management is crucial for your enterprise IT operations so that you can use appropriate resources 

for your applications and datasets. ONTAP includes the following features to streamline and simplify your 

operations and reduce your total cost of operation: 

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space 
inside storage blocks, and deduplication significantly increases effective capacity. 

• Minimum, maximum, and adaptive quality of service (QoS). Granular QoS controls help maintain 
performance levels for critical applications in highly shared environments. 

• ONTAP FabricPool. This feature provides automatic tiering of cold data to public and private cloud 
storage options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID® object-
based storage. 

Accelerate and Protect Data 

ONTAP delivers superior levels of performance and data protection and extends these capabilities with 

the following features: 

• High performance and low latency. ONTAP offers the highest possible throughput at the lowest 
possible latency. 

• NetApp ONTAP FlexGroup technology. A FlexGroup volume is a high-performance data container 
that can scale linearly to up to 20PB and 400 billion files, providing a single namespace that simplifies 
data management. 

• Data protection. ONTAP provides built-in data protection capabilities with common management 
across all platforms. 

• NetApp Volume Encryption. ONTAP offers native volume-level encryption with both onboard and 
external key management support. 

Future-Proof Infrastructure 

ONTAP 9 helps meet your demanding and constantly changing business needs: 

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of 
capacity to existing controllers and to scale-out clusters. You can upgrade to the latest technologies, 
such as NVMe and 32Gb FC, without costly data migrations or outages. 

• Cloud connection. ONTAP is one of the most cloud-connected storage management software, with 
options for software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud 
Volumes Service) in all public clouds. 

• Integration with emerging applications. By using the same infrastructure that supports existing 
enterprise apps, ONTAP offers enterprise-grade data services for next-generation platforms and 
applications such as OpenStack, Hadoop, and MongoDB. 

NetApp Snapshot Copies 

A NetApp Snapshot™ copy is a read-only, point-in-time image of a volume. The image consumes minimal 

storage space and incurs negligible performance overhead because it only records changes to files 

create since the last Snapshot copy was made. 

Snapshot copies owe their efficiency to the core ONTAP storage virtualization technology, the Write 

Anywhere File Layout (WAFL). Like a database, WAFL uses metadata to point to actual data blocks on 

disk. But, unlike a database, WAFL does not overwrite existing blocks. It writes updated data to a new 

block and changes the metadata. It's because ONTAP references metadata when it creates a Snapshot 

copy, rather than copying data blocks, that Snapshot copies are so efficient. Doing so eliminates the 

"seek time" that other systems incur in locating the blocks to copy, as well as the cost of making the copy 

itself. 
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You can use a Snapshot copy to recover individual files or LUNs or to restore the entire contents of a 

volume. ONTAP compares pointer information in the Snapshot copy with data on disk to reconstruct the 

missing or damaged object, without downtime or a significant performance cost. 

Figure 4) NetApp Snapshot copies. 

 

NetApp FlexClone Technology 

NetApp FlexClone® technology references Snapshot metadata to create writable, point-in-time copies of a 

volume. Copies share data blocks with their parents, consuming no storage except what is required for 

metadata, until changes are written to the copy. Where traditional copies can take minutes or even hours 

to create, FlexClone software lets you copy even the largest datasets almost instantaneously. That 

makes it ideal for situations in which you need multiple copies of identical datasets (a development 

workspace, for example) or temporary copies of a dataset (testing an application against a production 

dataset). 
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Figure 5) NetApp FlexClone technology. 

 

NetApp SnapMirror Data Replication Technology 

NetApp SnapMirror® software is a cost-effective, easy-to-use unified replication solution across the data 

fabric. It replicates data at high speeds over LAN or WAN. It gives you high data availability and fast data 

replication for applications of all types, including business critical applications in both virtual and 

traditional environments. When you replicate data to one or more NetApp storage systems and 

continually update the secondary data, your data is kept current and is available whenever you need it. 

No external replication servers are required. See Figure 6 for an example of an architecture that 

leverages SnapMirror technology. 

SnapMirror software leverages NetApp ONTAP storage efficiencies by sending only changed blocks over 

the network. SnapMirror software also uses built-in network compression to accelerate data transfers and 

reduce network bandwidth utilization by up to 70%. With SnapMirror technology, you can leverage one 

thin replication data stream to create a single repository that maintains both the active mirror and prior 

point-in-time copies, reducing network traffic by up to 50%. 

Figure 6) NetApp SnapMirror example. 
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NetApp Cloud Sync 

Cloud Sync is a NetApp service for rapid and secure data synchronization. Whether you need to transfer 

files between on-premises NFS or SMB file shares, NetApp StorageGRID, NetApp ONTAP S3, NetApp 

Cloud Volumes Service, Azure NetApp Files, AWS S3, AWS EFS, Azure Blob, Google Cloud Storage, or 

IBM Cloud Object Storage, Cloud Sync moves the files where you need them quickly and securely.  

After your data is transferred, it is fully available for use on both source and target. Cloud Sync can sync 

data on-demand when an update is triggered or continuously sync data based on a predefined schedule. 

Regardless, Cloud Sync only moves the deltas, so time and money spent on data replication is 

minimized. 

Cloud Sync is a software as a service (SaaS) tool that is extremely simple to set up and use. Data 

transfers that are triggered by Cloud Sync are carried out by data brokers. Cloud Sync data brokers can 

be deployed in AWS, Azure, Google Cloud Platform, or on-premises. 

Figure 7) Cloud Sync. 

 

NetApp XCP 

NetApp XCP is client-based software for any-to-NetApp and NetApp-to-NetApp data migrations and file 

system insights. XCP is designed to scale and achieve maximum performance by utilizing all available 

system resources to handle high-volume datasets and high-performance migrations. XCP helps you to 

gain complete visibility into the file system with the option to generate reports. 

NetApp XCP is available in a single package that supports NFS and SMB protocols. XCP includes a 

Linux binary for NFS data sets and a windows executable for SMB data sets. 

NetApp XCP File Analytics is host-based software that detects file shares, runs scans on the file system, 

and provides a dashboard for file analytics. XCP File Analytics is compatible with both NetApp and non-

NetApp systems and runs on Linux or Windows hosts to provide analytics for NFS and SMB-exported file 

systems. 

NetApp ONTAP FlexGroup Volumes 

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video, 

and other forms of unstructured data that must be stored and processed to be read in parallel. The 
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storage system must store large numbers of small files and must read those files in parallel for sequential 

and random I/O. 

A FlexGroup volume (Figure 8) is a single namespace that comprises multiple constituent member 

volumes. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a 

NetApp FlexVol® volume. Files in a FlexGroup volume are allocated to individual member volumes and 

are not striped across volumes or nodes. They enable the following capabilities: 

• FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-
metadata workloads. 

• They support up to 400 billion files in the same namespace. 

• They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and 
constituent FlexVol volumes. 

Figure 8) NetApp FlexGroup volumes. 

 

Hardware and Software Requirements 

All procedures outlined in this document were validated on the NetApp ONTAP AI converged 

infrastructure solution described in NVA-1121. This verified architecture pairs a NetApp AFF A800 all-

flash storage system with the NVIDIA DGX-1 Deep Learning System using Cisco Nexus networking. For 

this validation exercise, two bare-metal NVIDIA DGX-1 systems, each featuring eight NVIDIA V100 

GPUs, were used as Kubernetes worker nodes. A NetApp AFF A800 all-flash storage system provided a 

single persistent storage namespace across nodes, and two Cisco Nexus 3232C switches were used to 

provide network connectivity. Three virtual machines (VMs) that ran on a separate physical server outside 

of the ONTAP AI pod were used as Kubernetes master nodes. See Table 1 for validation environment 

infrastructure details. See Table 2 for validation environment software version details. 

Note, however, that the NetApp AI Control Plane solution that is outlined in this document is not 

dependent on this specific hardware. The solution is compatible with any NetApp physical storage 

appliance, software-defined instance, or cloud service, that supports the NFS protocol. Examples include 

a NetApp AFF storage system, Azure NetApp Files, NetApp Cloud Volumes Service, a NetApp ONTAP 

Select software-defined storage instance, or a NetApp Cloud Volumes ONTAP instance. Additionally, the 

solution can be implemented on any Kubernetes cluster as long as the Kubernetes version used is 

supported by Kubeflow and NetApp Trident. For a list of Kubernetes versions that are supported by 

Kubeflow, see the see the official Kubeflow documentation. For a list of Kubernetes versions that are 

supported by Trident, see the Trident documentation. 

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/
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Table 1) Validation environment infrastructure details. 

Component Quantity Details Operating System 

Deployment jump host 1 VM Ubuntu 18.04.5 LTS 

Kubernetes master nodes 3 VM Ubuntu 18.04.5 LTS 

Kubernetes worker nodes 2 NVIDIA DGX-1 (bare-metal) NVIDIA DGX OS 4.0.5 

(based on Ubuntu 18.04.2 LTS) 

Storage 1 HA Pair NetApp AFF A800 NetApp ONTAP 9.6 P1 

Network connectivity 2 Cisco Nexus 3232C Cisco NX-OS 7.0(3)I6(1) 

Table 2) Validation environment software version details. 

Component Version 

Apache Airflow 1.10.12 

Apache Airflow Helm Chart 7.10.1 

Cisco NX-OS 7.0(3)I6(1) 

Docker 18.09.7 

Kubeflow 1.0 

Kubernetes 1.17.9 

NetApp ONTAP 9.6 P1 

NetApp Trident 20.07 

NVIDIA DeepOps 20.08.1 

NVIDIA DGX OS 4.0.5 (based on Ubuntu 18.04.2 LTS) 

Ubuntu 18.04.5 LTS 

Support 

NetApp does not offer enterprise support for Apache Airflow, Docker, Kubeflow, Kubernetes, or NVIDIA 

DeepOps. If you are interested in a fully supported solution with capabilities similar to the NetApp AI 

Control Plane solution, contact NetApp about fully supported AI/ML solutions that NetApp offers jointly 

with partners. 

Kubernetes Deployment 

This section describes the tasks that you must complete to deploy a Kubernetes cluster in which to 

implement the NetApp AI Control Plane solution. If you already have a Kubernetes cluster, then you can 

skip this section as long as you are running a version of Kubernetes that is supported by Kubeflow and 

NetApp Trident. For a list of Kubernetes versions that are supported by Kubeflow, see the see the official 

Kubeflow documentation. For a list of Kubernetes versions that are supported by Trident, see the Trident 

documentation. 

For on-premises Kubernetes deployments that incorporate bare-metal nodes featuring NVIDIA GPU(s), 

NetApp recommends using NVIDIA’s DeepOps Kubernetes deployment tool. This section outlines the 

deployment of a Kubernetes cluster using DeepOps. 

Prerequisites 

Before you perform the deployment exercise that is outlined in this section, we assume that you have 

already performed the following tasks: 

https://www.netapp.com/us/contact-us/index.aspx?for_cr=us
https://www.kubeflow.org/docs/started/getting-started/
https://www.kubeflow.org/docs/started/getting-started/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/


15 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved. 

 

1. You have already configured any bare-metal Kubernetes nodes (for example, an NVIDIA DGX 
system that is part of an ONTAP AI pod) according to standard configuration instructions. 

2. You have installed a supported operating system on all Kubernetes master and worker nodes and on 
a deployment jump host. For a list of operating systems that are supported by DeepOps, see the 
DeepOps GitHub site. 

Use NVIDIA DeepOps to Install and Configure Kubernetes 

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the following tasks from 

a deployment jump host: 

1. Download NVIDIA DeepOps by following the instructions on the Getting Started page on the NVIDIA 
DeepOps GitHub site. 

2. Deploy Kubernetes in your cluster by following the instructions on the Kubernetes Deployment Guide 
page on the NVIDIA DeepOps GitHub site. 

 For the DeepOps Kubernetes deployment to work, the same user must exist on all 
Kubernetes master and worker nodes. 

If the deployment fails, change the value of kubectl_localhost to false in 

deepops/config/group_vars/k8s-cluster.yml and repeat step 2. The Copy kubectl binary 

to ansible host task, which executes only when the value of kubectl_localhost is true, relies 

on the fetch Ansible module, which has known memory usage issues. These memory usage issues can 

sometimes cause the task to fail. If the task fails because of a memory issue, then the remainder of the 

deployment operation does not complete successfully.  

If the deployment completes successfully after you have changed the value of kubectl_localhost to 

false, then you must manually copy the kubectl binary from a Kubernetes master node to the 

deployment jump host. You can find the location of the kubectl binary on a specific master node by 

executing the command which kubectl directly on that node. 

NetApp Trident Deployment and Configuration 

This section describes the tasks that you must complete to install and configure NetApp Trident in your 

Kubernetes cluster. 

Prerequisites 

Before you perform the deployment exercise that is outlined in this section, we assume that you have 

already performed the following tasks: 

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is 
supported by Trident. For a list of supported versions, see the Trident documentation. 

2. You already have a working NetApp storage appliance, software-defined instance, or cloud storage 
service, that supports the NFS protocol. 

Install Trident 

To install and configure NetApp Trident in your Kubernetes cluster, perform the following tasks from the 

deployment jump host: 

1. Deploy Trident using one of the following methods: 

a. If you used NVIDIA DeepOps to deploy your Kubernetes cluster, you can also use NVIDIA 
DeepOps to deploy Trident in your Kubernetes cluster. To deploy Trident with DeepOps, follow 
the Trident deployment instructions on the NVIDIA DeepOps GitHub site. 

https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops/blob/master/docs/getting-started.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md
https://netapp-trident.readthedocs.io/
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md#netapp-trident
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b. If you did not use NVIDIA DeepOps to deploy your Kubernetes cluster or if you simply prefer to 
deploy Trident manually, you can deploy Trident by following the deployment instructions in the 
Trident documentation. Be sure to create at least one Trident backend and at least one 
Kubernetes StorageClass. For more information about backends and StorageClasses, see the 
Trident documentation. 

 If you are deploying the NetApp AI Control Plane solution on an ONTAP AI pod, see the 
section “Example Trident Backends for ONTAP AI Deployments” for some examples of 
different Trident backends that you might want to create and the section “Example 
Kubernetes StorageClasses for ONTAP AI Deployments” for some examples of different 
Kubernetes StorageClasses that you might want to create. 

Example Trident Backends for ONTAP AI Deployments 

Before you can use Trident to dynamically provision storage resources within your Kubernetes cluster, 

you must create one or more Trident backends. The examples that follow represent different types of  

backends that you might want to create if you are deploying the NetApp AI Control Plane solution on an 

ONTAP AI pod. For more information about backends, see the Trident documentation. 

1. NetApp recommends creating a FlexGroup-enabled Trident backend for each data LIF (logical 
network interface that provides data access) that you want to use on your NetApp AFF system. Due 
to NFS protocol limitations, a single NFS mount can provide only 1.5GBps to 2GBps of bandwidth. If 
you need more bandwidth for a job, Trident enables you to add multiple NFS mounts (mounting the 
same NFS volume multiple times) quickly and easily when you create a Kubernetes pod. For 
maximum performance, these multiple mounts should be distributed across different data LIFs. You 
must create a Trident backend for each data LIF that you want to use for these mounts. 

The example commands that follow show the creation of two FlexGroup-enabled Trident backends 
for two different data LIFs that are associated with the same ONTAP storage virtual machine (SVM). 
These backends use the ontap-nas-flexgroup storage driver. ONTAP supports two main data 

volume types: FlexVol and FlexGroup. FlexVol volumes are size-limited (as of this writing, the 
maximum size depends on the specific deployment). FlexGroup volumes, on the other hand, can 
scale linearly to up to 20PB and 400 billion files, providing a single namespace that greatly simplifies 
data management. Therefore, FlexGroup volumes are optimal for AI and ML workloads that rely on 
large amounts of data. 

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup 
volumes, you can create Trident backends that use the ontap-nas storage driver instead of the 

ontap-nas-flexgroup storage driver. 

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface1.json 

{ 

    "version": 1, 

    "storageDriverName": "ontap-nas-flexgroup", 

    "backendName": "ontap-ai-flexgroups-iface1", 

    "managementLIF": "10.61.218.100", 

    "dataLIF": "192.168.11.11", 

    "svm": "ontapai_nfs", 

    "username": "admin", 

    "password": "ontapai" 

}  

EOF 

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-iface1.json -n trident 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

|            NAME            |   STORAGE DRIVER    |                 UUID                 | STATE  

| VOLUMES | 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | 

online |       0 | 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface2.json 

https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
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{ 

    "version": 1, 

    "storageDriverName": "ontap-nas-flexgroup", 

    "backendName": "ontap-ai-flexgroups-iface2", 

    "managementLIF": "10.61.218.100", 

    "dataLIF": "192.168.12.12", 

    "svm": "ontapai_nfs", 

    "username": "admin", 

    "password": "ontapai" 

}  

EOF 

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-iface2.json -n trident 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

|            NAME            |   STORAGE DRIVER    |                 UUID                 | STATE  

| VOLUMES | 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d | 

online |       0 | 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

$ tridentctl get backend -n trident 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

|            NAME            |   STORAGE DRIVER    |                 UUID                 | STATE  

| VOLUMES | 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | 

online |       0 | 

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d | 

online |       0 | 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

2. NetApp also recommends creating one or more FlexVol-enabled Trident backends. If you use 
FlexGroup volumes for training dataset storage, you might want to use FlexVol volumes for storing 
results, output, debug information, and so on. If you want to use FlexVol volumes, you must create 
one or more FlexVol-enabled Trident backends. The example commands that follow show the 
creation of a single FlexVol-enabled Trident backend that uses a single data LIF. 

$ cat << EOF > ./trident-backend-ontap-ai-flexvols.json 

{ 

    "version": 1, 

    "storageDriverName": "ontap-nas", 

    "backendName": "ontap-ai-flexvols", 

    "managementLIF": "10.61.218.100", 

    "dataLIF": "192.168.11.11", 

    "svm": "ontapai_nfs", 

    "username": "admin", 

    "password": "ontapai" 

}  

EOF 

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexvols.json -n trident 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

|            NAME            |   STORAGE DRIVER    |                 UUID                 | STATE  

| VOLUMES | 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

| ontap-ai-flexvols          | ontap-nas           | 52bdb3b1-13a5-4513-a9c1-52a69657fabe | 

online |       0 | 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

$ tridentctl get backend -n trident 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

|            NAME            |   STORAGE DRIVER    |                 UUID                 | STATE  

| VOLUMES | 



18 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved. 

 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

| ontap-ai-flexvols          | ontap-nas           | 52bdb3b1-13a5-4513-a9c1-52a69657fabe | 

online |       0 | 

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | 

online |       0 | 

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d | 

online |       0 | 

+----------------------------+---------------------+--------------------------------------+------

--+---------+ 

Example Kubernetes StorageClasses for ONTAP AI Deployments 

Before you can use Trident to dynamically provision storage resources within your Kubernetes cluster, 

you must create one or more Kubernetes StorageClasses. The examples that follow represent different 

types of StorageClasses that you might want to create if you are deploying the NetApp AI Control Plane 

solution on an ONTAP AI pod. For more information about StorageClasses, see the Trident 

documentation. 

1. NetApp recommends creating a separate StorageClass for each FlexGroup-enabled Trident backend 
that you created in the section “Example Trident Backends for ONTAP AI Deployments,” step 1. 
These granular StorageClasses enable you to add NFS mounts that correspond to specific LIFs (the 
LIFs that you specified when you created the Trident backends) as a particular backend that is 
specified in the StorageClass spec file. The example commands that follow show the creation of two 
StorageClasses that correspond to the two example backends that were created in the section 
“Example Trident Backends for ONTAP AI Deployments,” step 1. The highlighted text shows where 
the Trident backend is specified in the StorageClass definition file. For more information about 
StorageClasses, see the Trident documentation. 

 So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim 
(PVC) is deleted, the following example uses a reclaimPolicy value of Retain. For more 
information about the reclaimPolicy field, see the official Kubernetes documentation. 

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface1.yaml 

apiVersion: storage.k8s.io/v1 

kind: StorageClass 

metadata: 

  name: ontap-ai-flexgroups-retain-iface1 

provisioner: netapp.io/trident 

parameters: 

  backendType: "ontap-nas-flexgroup" 

  storagePools: "ontap-ai-flexgroups-iface1:.*" 

reclaimPolicy: Retain  

EOF 

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-iface1.yaml 

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface1 created 

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml 

apiVersion: storage.k8s.io/v1 

kind: StorageClass 

metadata: 

  name: ontap-ai-flexgroups-retain-iface2 

provisioner: netapp.io/trident 

parameters: 

  backendType: "ontap-nas-flexgroup" 

  storagePools: "ontap-ai-flexgroups-iface2:.*" 

reclaimPolicy: Retain  

EOF 

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml 

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface2 created 

$ kubectl get storageclass 

NAME                                PROVISIONER         AGE 

ontap-ai-flexgroups-retain-iface1   netapp.io/trident   0m 

ontap-ai-flexgroups-retain-iface2   netapp.io/trident   0m 

2. NetApp also recommends creating a StorageClass that corresponds to the FlexVol-enabled Trident 
backend that you created in the section “Example Trident Backends for ONTAP AI Deployments,” 

https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/storage-classes/
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step 2. The example commands that follow show the creation of a single StorageClass for FlexVol 
volumes. 

 In the following example, a particular backend is not specified in the StorageClass definition 
file because only one FlexVol-enabled Trident backend was created in the section “Install 
Trident,” step 2. When you use Kubernetes to administer volumes that use this StorageClass, 
Trident attempts to use any available backend that uses the ontap-nas driver. 

$ cat << EOF > ./storage-class-ontap-ai-flexvols-retain.yaml 

apiVersion: storage.k8s.io/v1 

kind: StorageClass 

metadata: 

  name: ontap-ai-flexvols-retain 

provisioner: netapp.io/trident 

parameters: 

  backendType: "ontap-nas" 

reclaimPolicy: Retain  

EOF 

$ kubectl create -f ./storage-class-ontap-ai-flexvols-retain.yaml 

storageclass.storage.k8s.io/ontap-ai-flexvols-retain created 

$ kubectl get storageclass 

NAME                                PROVISIONER         AGE 

ontap-ai-flexgroups-retain-iface1   netapp.io/trident   1m 

ontap-ai-flexgroups-retain-iface2   netapp.io/trident   1m 

ontap-ai-flexvols-retain            netapp.io/trident   0m 

3. NetApp also recommends creating a generic StorageClass for FlexGroup volumes. The following 
example commands show the creation of a single generic StorageClass for FlexGroup volumes. Note 
that a particular backend is not specified in the StorageClass definition file. Therefore, when you use 
Kubernetes to administer volumes that use this StorageClass, Trident attempts to use any available 
backend that uses the ontap-nas-flexgroup driver. 

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain.yaml 

apiVersion: storage.k8s.io/v1 

kind: StorageClass 

metadata: 

  name: ontap-ai-flexgroups-retain 

provisioner: netapp.io/trident 

parameters: 

  backendType: "ontap-nas-flexgroup" 

reclaimPolicy: Retain  

EOF 

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain.yaml 

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain created 

$ kubectl get storageclass 

NAME                                PROVISIONER         AGE 

ontap-ai-flexgroups-retain          netapp.io/trident   0m 

ontap-ai-flexgroups-retain-iface1   netapp.io/trident   2m 

ontap-ai-flexgroups-retain-iface2   netapp.io/trident   2m 

ontap-ai-flexvols-retain            netapp.io/trident   1m 

Kubeflow Deployment 

This section describes the tasks that you must complete to deploy Kubeflow in your Kubernetes cluster. 

Prerequisites 

Before you perform the deployment exercise that is outlined in this section, we assume that you have 

already performed the following tasks: 

1. You already have a working Kubernetes cluster, and you are running a version of Kubernetes that is 
supported by Kubeflow. For a list of supported versions, see the official Kubeflow documentation. 

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in 
the section “NetApp Trident Deployment and Configuration.” 

https://www.kubeflow.org/docs/started/getting-started/
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Set Default Kubernetes StorageClass 

Before you deploy Kubeflow, you must designate a default StorageClass within your Kubernetes cluster. 

The Kubeflow deployment process attempts to provision new persistent volumes using the default 

StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment fails. 

To designate a default StorageClass within your cluster, perform the following task from the deployment 

jump host. If you have already designated a default StorageClass within your cluster, then you can skip 

this step. 

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands 
that follow show the designation of a StorageClass named ontap-ai-flexvols-retain as the 

default StorageClass. 

 The ontap-nas-flexgroup Trident backend type has a minimum PVC size of 800GB. By 
default, Kubeflow attempts to provision PVCs that are smaller than 800GB. Therefore, you 
should not designate a StorageClass that utilizes the ontap-nas-flexgroup backend type 
as the default StorageClass for the purposes of Kubeflow deployment. 

$ kubectl get sc 

NAME                                PROVISIONER             AGE 

ontap-ai-flexgroups-retain          csi.trident.netapp.io   25h 

ontap-ai-flexgroups-retain-iface1   csi.trident.netapp.io   25h 

ontap-ai-flexgroups-retain-iface2   csi.trident.netapp.io   25h 

ontap-ai-flexvols-retain            csi.trident.netapp.io   3s 

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata": 

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}' 

storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched 

$ kubectl get sc 

NAME                                 PROVISIONER             AGE 

ontap-ai-flexgroups-retain           csi.trident.netapp.io   25h 

ontap-ai-flexgroups-retain-iface1    csi.trident.netapp.io   25h 

ontap-ai-flexgroups-retain-iface2    csi.trident.netapp.io   25h 

ontap-ai-flexvols-retain (default)   csi.trident.netapp.io   54s 

Use NVIDIA DeepOps to Deploy Kubeflow 

NetApp recommends using the Kubeflow deployment tool that is provided by NVIDIA DeepOps. To 

deploy Kubeflow in your Kubernetes cluster using the DeepOps deployment tool, perform the following 

tasks from the deployment jump host.  

Note: Alternatively, you can deploy Kubeflow manually by following the installation instructions in the 
official Kubeflow documentation 

1. Deploy Kubeflow in your cluster by following the Kubeflow deployment instructions on the NVIDIA 
DeepOps GitHub site. 

2. Note down the Kubeflow Dashboard URL that the DeepOps Kubeflow deployment tool outputs. 

$ ./scripts/k8s_deploy_kubeflow.sh  

… 

INFO[0007] Applied the configuration Successfully!       filename="cmd/apply.go:72" 

 

Kubeflow app installed to: /home/ai/kubeflow 

 

It may take several minutes for all services to start. Run 'kubectl get pods -n kubeflow' to 

verify 

 

To remove (excluding CRDs, istio, auth, and cert-manager), run: ./scripts/k8s_deploy_kubeflow.sh 

-d 

 

To perform a full uninstall : ./scripts/k8s_deploy_kubeflow.sh -D 

 

Kubeflow Dashboard (HTTP NodePort): http://10.61.188.111:31380  

3. Confirm that all pods deployed within the Kubeflow namespace show a STATUS of Running and 

confirm that no components deployed within the namespace are in an error state.  

https://www.kubeflow.org/docs/started/getting-started/
https://github.com/NVIDIA/deepops/blob/master/docs/k8s-cluster/kubeflow.md
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$ kubectl get all -n kubeflow 

NAME                                                           READY   STATUS    RESTARTS   AGE 

pod/admission-webhook-bootstrap-stateful-set-0                 1/1     Running   0          95s 

pod/admission-webhook-deployment-6b89c84c98-vrtbh              1/1     Running   0          91s 

pod/application-controller-stateful-set-0                      1/1     Running   0          98s 

pod/argo-ui-5dcf5d8b4f-m2wn4                                   1/1     Running   0          97s 

pod/centraldashboard-cf4874ddc-7hcr8                           1/1     Running   0          97s 

pod/jupyter-web-app-deployment-685b455447-gjhh7                1/1     Running   0          96s 

pod/katib-controller-88c97d85c-kgq66                           1/1     Running   1          95s 

pod/katib-db-8598468fd8-5jw2c                                  1/1     Running   0          95s 

pod/katib-manager-574c8c67f9-wtrf5                             1/1     Running   1          95s 

pod/katib-manager-rest-778857c989-fjbzn                        1/1     Running   0          95s 

pod/katib-suggestion-bayesianoptimization-65df4d7455-qthmw     1/1     Running   0          94s 

pod/katib-suggestion-grid-56bf69f597-98vwn                     1/1     Running   0          94s 

pod/katib-suggestion-hyperband-7777b76cb9-9v6dq                1/1     Running   0          93s 

pod/katib-suggestion-nasrl-77f6f9458c-2qzxq                    1/1     Running   0          93s 

pod/katib-suggestion-random-77b88b5c79-l64j9                   1/1     Running   0          93s 

pod/katib-ui-7587c5b967-nd629                                  1/1     Running   0          95s 

pod/metacontroller-0                                           1/1     Running   0          96s 

pod/metadata-db-5dd459cc-swzkm                                 1/1     Running   0          94s 

pod/metadata-deployment-6cf77db994-69fk7                       1/1     Running   3          93s 

pod/metadata-deployment-6cf77db994-mpbjt                       1/1     Running   3          93s 

pod/metadata-deployment-6cf77db994-xg7tz                       1/1     Running   3          94s 

pod/metadata-ui-78f5b59b56-qb6kr                               1/1     Running   0          94s 

pod/minio-758b769d67-llvdr                                     1/1     Running   0          91s 

pod/ml-pipeline-5875b9db95-g8t2k                               1/1     Running   0          91s 

pod/ml-pipeline-persistenceagent-9b69ddd46-bt9r9               1/1     Running   0          90s 

pod/ml-pipeline-scheduledworkflow-7b8d756c76-7x56s             1/1     Running   0          90s 

pod/ml-pipeline-ui-79ffd9c76-fcwpd                             1/1     Running   0          90s 

pod/ml-pipeline-viewer-controller-deployment-5fdc87f58-b2t9r   1/1     Running   0          90s 

pod/mysql-657f87857d-l5k9z                                     1/1     Running   0          91s 

pod/notebook-controller-deployment-56b4f59bbf-8bvnr            1/1     Running   0          92s 

pod/profiles-deployment-6bc745947-mrdkh                        2/2     Running   0          90s 

pod/pytorch-operator-77c97f4879-hmlrv                          1/1     Running   0          92s 

pod/seldon-operator-controller-manager-0                       1/1     Running   1          91s 

pod/spartakus-volunteer-5fdfddb779-l7qkm                       1/1     Running   0          92s 

pod/tensorboard-6544748d94-nh8b2                               1/1     Running   0          92s 

pod/tf-job-dashboard-56f79c59dd-6w59t                          1/1     Running   0          92s 

pod/tf-job-operator-79cbfd6dbc-rb58c                           1/1     Running   0          91s 

pod/workflow-controller-db644d554-cwrnb                        1/1     Running   0          97s 

 

 

NAME                                                 TYPE        CLUSTER-IP      EXTERNAL-IP   

PORT(S)             AGE 

service/admission-webhook-service                    ClusterIP   10.233.51.169   <none>        

443/TCP             97s 

service/application-controller-service               ClusterIP   10.233.4.54     <none>        

443/TCP             98s 

service/argo-ui                                      NodePort    10.233.47.191   <none>        

80:31799/TCP        97s 

service/centraldashboard                             ClusterIP   10.233.8.36     <none>        

80/TCP              97s 

service/jupyter-web-app-service                      ClusterIP   10.233.1.42     <none>        

80/TCP              97s 

service/katib-controller                             ClusterIP   10.233.25.226   <none>        

443/TCP             96s 

service/katib-db                                     ClusterIP   10.233.33.151   <none>        

3306/TCP            97s 

service/katib-manager                                ClusterIP   10.233.46.239   <none>        

6789/TCP            96s 

service/katib-manager-rest                           ClusterIP   10.233.55.32    <none>        

80/TCP              96s 

service/katib-suggestion-bayesianoptimization        ClusterIP   10.233.49.191   <none>        

6789/TCP            95s 

service/katib-suggestion-grid                        ClusterIP   10.233.9.105    <none>        

6789/TCP            95s 

service/katib-suggestion-hyperband                   ClusterIP   10.233.22.2     <none>        

6789/TCP            95s 

service/katib-suggestion-nasrl                       ClusterIP   10.233.63.73    <none>        

6789/TCP            95s 
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service/katib-suggestion-random                      ClusterIP   10.233.57.210   <none>        

6789/TCP            95s 

service/katib-ui                                     ClusterIP   10.233.6.116    <none>        

80/TCP              96s 

service/metadata-db                                  ClusterIP   10.233.31.2     <none>        

3306/TCP            96s 

service/metadata-service                             ClusterIP   10.233.27.104   <none>        

8080/TCP            96s 

service/metadata-ui                                  ClusterIP   10.233.57.177   <none>        

80/TCP              96s 

service/minio-service                                ClusterIP   10.233.44.90    <none>        

9000/TCP            94s 

service/ml-pipeline                                  ClusterIP   10.233.41.201   <none>        

8888/TCP,8887/TCP   94s 

service/ml-pipeline-tensorboard-ui                   ClusterIP   10.233.36.207   <none>        

80/TCP              93s 

service/ml-pipeline-ui                               ClusterIP   10.233.61.150   <none>        

80/TCP              93s 

service/mysql                                        ClusterIP   10.233.55.117   <none>        

3306/TCP            94s 

service/notebook-controller-service                  ClusterIP   10.233.10.166   <none>        

443/TCP             95s 

service/profiles-kfam                                ClusterIP   10.233.33.79    <none>        

8081/TCP            92s 

service/pytorch-operator                             ClusterIP   10.233.37.112   <none>        

8443/TCP            95s 

service/seldon-operator-controller-manager-service   ClusterIP   10.233.30.178   <none>        

443/TCP             92s 

service/tensorboard                                  ClusterIP   10.233.58.151   <none>        

9000/TCP            94s 

service/tf-job-dashboard                             ClusterIP   10.233.4.17     <none>        

80/TCP              94s 

service/tf-job-operator                              ClusterIP   10.233.60.32    <none>        

8443/TCP            94s 

service/webhook-server-service                       ClusterIP   10.233.32.167   <none>        

443/TCP             87s 

 

 

NAME                                                       READY   UP-TO-DATE   AVAILABLE   AGE 

deployment.apps/admission-webhook-deployment               1/1     1            1           97s 

deployment.apps/argo-ui                                    1/1     1            1           97s 

deployment.apps/centraldashboard                           1/1     1            1           97s 

deployment.apps/jupyter-web-app-deployment                 1/1     1            1           97s 

deployment.apps/katib-controller                           1/1     1            1           96s 

deployment.apps/katib-db                                   1/1     1            1           97s 

deployment.apps/katib-manager                              1/1     1            1           96s 

deployment.apps/katib-manager-rest                         1/1     1            1           96s 

deployment.apps/katib-suggestion-bayesianoptimization      1/1     1            1           95s 

deployment.apps/katib-suggestion-grid                      1/1     1            1           95s 

deployment.apps/katib-suggestion-hyperband                 1/1     1            1           95s 

deployment.apps/katib-suggestion-nasrl                     1/1     1            1           95s 

deployment.apps/katib-suggestion-random                    1/1     1            1           95s 

deployment.apps/katib-ui                                   1/1     1            1           96s 

deployment.apps/metadata-db                                1/1     1            1           96s 

deployment.apps/metadata-deployment                        3/3     3            3           96s 

deployment.apps/metadata-ui                                1/1     1            1           96s 

deployment.apps/minio                                      1/1     1            1           94s 

deployment.apps/ml-pipeline                                1/1     1            1           94s 

deployment.apps/ml-pipeline-persistenceagent               1/1     1            1           93s 

deployment.apps/ml-pipeline-scheduledworkflow              1/1     1            1           93s 

deployment.apps/ml-pipeline-ui                             1/1     1            1           93s 

deployment.apps/ml-pipeline-viewer-controller-deployment   1/1     1            1           93s 

deployment.apps/mysql                                      1/1     1            1           94s 

deployment.apps/notebook-controller-deployment             1/1     1            1           95s 

deployment.apps/profiles-deployment                        1/1     1            1           92s 

deployment.apps/pytorch-operator                           1/1     1            1           95s 

deployment.apps/spartakus-volunteer                        1/1     1            1           94s 

deployment.apps/tensorboard                                1/1     1            1           94s 

deployment.apps/tf-job-dashboard                           1/1     1            1           94s 

deployment.apps/tf-job-operator                            1/1     1            1           94s 

deployment.apps/workflow-controller                        1/1     1            1           97s 
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NAME                                                                 DESIRED   CURRENT   READY   

AGE 

replicaset.apps/admission-webhook-deployment-6b89c84c98              1         1         1       

97s 

replicaset.apps/argo-ui-5dcf5d8b4f                                   1         1         1       

97s 

replicaset.apps/centraldashboard-cf4874ddc                           1         1         1       

97s 

replicaset.apps/jupyter-web-app-deployment-685b455447                1         1         1       

97s 

replicaset.apps/katib-controller-88c97d85c                           1         1         1       

96s 

replicaset.apps/katib-db-8598468fd8                                  1         1         1       

97s 

replicaset.apps/katib-manager-574c8c67f9                             1         1         1       

96s 

replicaset.apps/katib-manager-rest-778857c989                        1         1         1       

96s 

replicaset.apps/katib-suggestion-bayesianoptimization-65df4d7455     1         1         1       

95s 

replicaset.apps/katib-suggestion-grid-56bf69f597                     1         1         1       

95s 

replicaset.apps/katib-suggestion-hyperband-7777b76cb9                1         1         1       

95s 

replicaset.apps/katib-suggestion-nasrl-77f6f9458c                    1         1         1       

95s 

replicaset.apps/katib-suggestion-random-77b88b5c79                   1         1         1       

95s 

replicaset.apps/katib-ui-7587c5b967                                  1         1         1       

96s 

replicaset.apps/metadata-db-5dd459cc                                 1         1         1       

96s 

replicaset.apps/metadata-deployment-6cf77db994                       3         3         3       

96s 

replicaset.apps/metadata-ui-78f5b59b56                               1         1         1       

96s 

replicaset.apps/minio-758b769d67                                     1         1         1       

93s 

replicaset.apps/ml-pipeline-5875b9db95                               1         1         1       

93s 

replicaset.apps/ml-pipeline-persistenceagent-9b69ddd46               1         1         1       

92s 

replicaset.apps/ml-pipeline-scheduledworkflow-7b8d756c76             1         1         1       

91s 

replicaset.apps/ml-pipeline-ui-79ffd9c76                             1         1         1       

91s 

replicaset.apps/ml-pipeline-viewer-controller-deployment-5fdc87f58   1         1         1       

91s 

replicaset.apps/mysql-657f87857d                                     1         1         1       

92s 

replicaset.apps/notebook-controller-deployment-56b4f59bbf            1         1         1       

94s 

replicaset.apps/profiles-deployment-6bc745947                        1         1         1       

91s 

replicaset.apps/pytorch-operator-77c97f4879                          1         1         1       

94s 

replicaset.apps/spartakus-volunteer-5fdfddb779                       1         1         1       

94s 

replicaset.apps/tensorboard-6544748d94                               1         1         1       

93s 

replicaset.apps/tf-job-dashboard-56f79c59dd                          1         1         1       

93s 

replicaset.apps/tf-job-operator-79cbfd6dbc                           1         1         1       

93s 

replicaset.apps/workflow-controller-db644d554                        1         1         1       

97s 

 

NAME                                                        READY   AGE 

statefulset.apps/admission-webhook-bootstrap-stateful-set   1/1     97s 

statefulset.apps/application-controller-stateful-set        1/1     98s 
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statefulset.apps/metacontroller                             1/1     98s 

statefulset.apps/seldon-operator-controller-manager         1/1     92s 

 

$ kubectl get pvc -n kubeflow 

NAME             STATUS   VOLUME                                     CAPACITY   ACCESS MODES   

STORAGECLASS               AGE 

katib-mysql      Bound    pvc-b07f293e-d028-11e9-9b9d-00505681a82d   10Gi       RWO            

ontap-ai-flexvols-retain   27m 

metadata-mysql   Bound    pvc-b0f3f032-d028-11e9-9b9d-00505681a82d   10Gi       RWO            

ontap-ai-flexvols-retain   27m 

minio-pv-claim   Bound    pvc-b22727ee-d028-11e9-9b9d-00505681a82d   20Gi       RWO            

ontap-ai-flexvols-retain   27m 

mysql-pv-claim   Bound    pvc-b2429afd-d028-11e9-9b9d-00505681a82d   20Gi       RWO            

ontap-ai-flexvols-retain   27m 

4. In your web browser, access the Kubeflow central dashboard by navigating to the URL that you noted 
down in step 2. 

 The default username is admin@kubeflow.org, and the default password is 12341234. To 
create additional users, follow the instructions in the official Kubeflow documentation. 

 

Example Kubeflow Operations and Tasks 

This section includes examples of various operations and tasks that you may want to perform using 

Kubeflow. 

https://www.kubeflow.org/docs/started/k8s/kfctl-existing-arrikto/#add-static-users-for-basic-auth
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Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use 

Kubeflow is capable of rapidly provisioning new Jupyter Notebook servers to act as data scientist 

workspaces. To provision a new Jupyter Notebook server with Kubeflow, perform the following tasks. For 

more information about Jupyter Notebooks within the Kubeflow context, see the official Kubeflow 

documentation. 

1. Optional: If there are existing volumes on your NetApp storage system that you want to mount on the 
new Jupyter Notebook server, but that are not tied to PersistentVolumeClaims (PVCs) in the 
namespace that the new server is going to be created in (see step 4 below), then you must import 
these volumes into that namespace. Use the Trident volume import functionality to import these 
volumes. 

The example commands that follow show the importing of an existing volume named pb_fg_all into 

the kubeflow-anonymous namespace. These commands create a PVC in the kubeflow-

anonymous namespace that is tied to the volume on the NetApp storage system. For more 

information about PVCs, see the official Kubernetes documentation. For more information about the 
volume import functionality, see the Trident documentation. For a detailed example showing the 
importing of a volume using Trident, see the section “0.” 

 The volume is imported in the kubeflow-anonymous namespace because that is the 
namespace that the new Jupyter Notebook server is created in in step 4. To mount this 
existing volume on the new Jupyter Notebook server using Kubeflow, a PVC must exist for 
the volume in the same namespace. 

$ cat << EOF > ./pvc-import-pb_fg_all-kubeflow-anonymous.yaml 

kind: PersistentVolumeClaim 

apiVersion: v1 

metadata: 

  name: pb-fg-all 

  namespace: kubeflow-anonymous 

spec: 

  accessModes: 

    - ReadOnlyMany 

  storageClassName: ontap-ai-flexgroups-retain  

EOF 

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-import-pb_fg_all-

kubeflow-anonymous.yaml -n trident 

+------------------------------------------+--------+----------------------------+----------+----

----------------------------------+--------+---------+ 

|                   NAME                   |  SIZE  |       STORAGE CLASS        | PROTOCOL |             

BACKEND UUID             | STATE  | MANAGED | 

+------------------------------------------+--------+----------------------------+----------+----

----------------------------------+--------+---------+ 

| pvc-1ed071be-d5a6-11e9-8278-00505681feb6 | 10 TiB | ontap-ai-flexgroups-retain | file     | 

12f4f8fa-0500-4710-a023-d9b47e86a2ec | online | true    | 

+------------------------------------------+--------+----------------------------+----------+----

----------------------------------+--------+---------+ 

$ kubectl get pvc -n kubeflow-anonymous 

NAME        STATUS   VOLUME                                     CAPACITY   ACCESS MODES   

STORAGECLASS                 AGE 

pb-fg-all   Bound    pvc-1ed071be-d5a6-11e9-8278-00505681feb6   10Ti       ROX            ontap-

ai-flexgroups-retain   14s 

2. From the Kubeflow central dashboard, click Notebook Servers in the main menu to navigate to the 
Jupyter Notebook server administration page. 

https://www.kubeflow.org/docs/components/jupyter/
https://www.kubeflow.org/docs/components/jupyter/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/
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3. Click New Server to provision a new Jupyter Notebook server. 

 

4. Give your new server a name, choose the Docker image that you want your server to be based on, 
and specify the amount of CPU and RAM to be reserved by your server. If the Namespace field is 
blank, use the Select Namespace menu in the page header to choose a namespace. The 
Namespace field is then auto-populated with the chosen namespace. 

In the following example, the kubeflow-anonymous namespace is chosen. In addition, the default 

values for Docker image, CPU, and RAM are accepted. 
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5. Specify the workspace volume details. If you choose to create a new volume, then that volume or 
PVC is provisioned using the default StorageClass. Because a StorageClass utilizing Trident was 
designated as the default StorageClass in the section “Set Default Kubernetes StorageClass,” the 
volume or PVC is provisioned with Trident. This volume is automatically mounted as the default 
workspace within the Jupyter Notebook Server container. Any notebooks that a user creates on the 
server that are not saved to a separate data volume are automatically saved to this workspace 
volume. Therefore, the notebooks are persistent across reboots. 

 

6. Add data volumes. The following example specifies the existing volume that was imported by the 
example commands in step 1 and accepts the default mount point. 
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7. Optional: Request that the desired number of GPUs be allocated to your notebook server. In the 
following example, one GPU is requested. 

 

8. Click Launch to provision your new notebook server. 

9. Wait for your notebook server to be fully provisioned. This can take several minutes if you have never 
provisioned a server using the Docker image that you specified in step 4 because the image needs to 
be downloaded. When your server has been fully provisioned, you see a green checkmark graphic in 
the Status column on the Jupyter Notebook server administration page. 

 

10. Click Connect to connect to your new server’s web interface. 

11. Confirm that the dataset volume that was specified in step 6 is mounted on the server. Note that this 
volume is mounted within the default workspace by default. From the perspective of the user, this is 
just another folder within the workspace. The user, who is likely a data scientist and not an 
infrastructure expert, does not need to possess any storage expertise in order to use this volume. 
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12. Open a terminal and, assuming that a new volume was requested in step 5, execute df -h to 

confirm that a new Trident-provisioned persistent volume is mounted as the default workspace. 

 The default workspace directory is the base directory that you are presented with when you 
first access the server’s web interface. Therefore, any artifacts that the user creates using the 
web interface are stored on this Trident-provisioned persistent volume. 
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13. Using the terminal, run nvidia-smi to confirm that the correct number of GPUs were allocated to 

the notebook server. In the following example, one GPU has been allocated to the notebook server 
as requested in step 7. 
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Create a Snapshot of an ONTAP Volume from Within a Jupyter Notebook 

To trigger the creation of a snapshot, from within a Jupyter Notebook, of a NetApp ONTAP volume that is 

mounted in the Jupyter Notebook Server’s workspace, perform the following tasks. This operation takes 

advantage of the NetApp ONTAP REST APIs and the NetApp ONTAP Python module. For more 

information about the REST APIs and the Python module, see the NetApp support site. Note that tasks in 

this section only work for volumes that reside on ONTAP storage systems or software-defined instances. 

1. Connect to a Jupyter Notebook server’s web interface. See the section “Provision a Jupyter Notebook 
Workspace for Data Scientist or Developer Use" for instructions on how to provision a Jupyter 
Notebook Server. 

2. Open an existing Python 3 notebook or create a new Python 3 notebook. The following example 
shows the creation of a new Python 3 notebook. 

 

3. Add the following content to the Notebook, update variable values as stated in the comments, and 
then run all cells. Alternatively, an example Jupyter Notebook containing this content can be 
downloaded from NetApp’s Kubeflow and Jupyter Examples GitHub repository. 

https://library.netapp.com/ecmdocs/ECMLP2858435/html/index.html
https://github.com/NetApp/kubeflow_jupyter_pipeline
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Trigger a Cloud Sync Replication Update from Within a Jupyter Notebook 

From directly within a Jupyter Notebook, you can trigger the replication of data to and from a variety of file 

and object storage platforms by using NetApp Cloud Sync replication technology. Potential use cases 

include: 

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the 
cloud to be used for AI/ML model training or retraining.  

• Replicating a newly trained or newly-updated model from the core data center to the edge or to the 
cloud to be deployed as part of an inferencing application. 

• Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the 
training of an AI/ML model. 

• Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML 
training environment for use in the training of an AI/ML model. 

• Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage. 

• Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance 
AI/ML training environment for use in the training of an AI/ML model. 

To trigger a Cloud Sync replication update from within a Jupyter Notebook, perform the following tasks: 

Note: Before you perform the exercises that are outlined in this section, we assume that you have 
already initiated the Cloud Sync relationship that you wish to trigger an update for. To initiate a 
relationship, visit cloudsync.netapp.com. 

1. Connect to a Jupyter Notebook server’s web interface. For instructions on how to provision a Jupyter 
Notebook server, see the section “Provision a Jupyter Notebook Workspace for Data Scientist or 
Developer Use.”. 

2. Open an existing Python 3 notebook or create a new Python 3 notebook. The following example 
shows the creation of a new Python 3 notebook. 

http://cloudsync.netapp.com/
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3. Add the following content to the Notebook, update variable values as stated in the instructions, and 
then run all cells. Alternatively, an example Jupyter Notebook containing this content can be 
downloaded from NetApp’s Kubeflow and Jupyter Examples GitHub repository. 

 

https://github.com/NetApp/kubeflow_jupyter_pipeline


37 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved. 

 

 

 



38 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved. 

 

 

 



39 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved. 

 

 

 



40 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved. 

 

 

 

Create a Kubeflow Pipeline to Execute an End-to-End AI Training Workflow with 
Built-in Traceability and Versioning 

To define and execute a new Kubeflow Pipeline that takes advantage of NetApp Snapshot technology in 

order to integrate rapid and efficient dataset and model versioning and traceability into an end-to-end 

AI/ML model training workflow, perform the following tasks. For more information about Kubeflow 
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pipelines, see the official Kubeflow documentation. Note that the example pipeline that is shown in this 

section only works with volumes that reside on ONTAP storage systems or software-defined instances. 

1. Create a Kubernetes secret containing the username and password of the cluster admin account for 
the ONTAP cluster on which your volumes reside. This secret must be created in the kubeflow 

namespace because this is the namespace that pipelines are executed in. Note that you must replace 
username and password with your username and password when executing these commands, and 

you must use the output of the base64 commands (see highlighted text) in your secret definition 
accordingly. 

$ echo -n 'username' | base64 

dXNlcm5hbWU= 

$ echo -n 'password' | base64 

cGFzc3dvcmQ= 

$ cat << EOF > ./secret-ontap-cluster-mgmt-account.yaml 

apiVersion: v1 

kind: Secret 

metadata: 

  name: ontap-cluster-mgmt-account 

  namespace: kubeflow 

data: 

  username: dXNlcm5hbWU= 

  password: cGFzc3dvcmQ= 

EOF 

$ kubectl create -f ./secret-ontap-cluster-mgmt-account.yaml 

secret/ontap-cluster-mgmt-account created 

2. If the volume containing the data that you plan to use to train your model is not tied to a PVC in the 
kubeflow namespace, then you must import this volume into that namespace. Use the Trident 

volume import functionality to import this volume. The volume must be imported into the kubeflow 

namespace because this is the namespace that pipelines are executed in.  

If your dataset volume is already tied to a PVC in the kubeflow namespace, then you can skip this 

step. If you do not yet have a dataset volume, then you must provision one and then transfer your 
data to it. See the section “Provision a New Volume” for an example showing how to provision a new 
volume with Trident. 

The example commands that follow show the importing of an existing FlexVol volume, named 
dataset_vol, into the kubeflow namespace. For more information about PVCs, see the official 

Kubernetes documentation. For more information about the volume import functionality, see the 
Trident documentation. For a detailed example showing the importing of a volume using Trident, see 
the section “Import an Existing Volume.” 

$ cat << EOF > ./pvc-import-dataset-vol-kubeflow.yaml 

kind: PersistentVolumeClaim 

apiVersion: v1 

metadata: 

  name: dataset-vol 

  namespace: kubeflow 

spec: 

  accessModes: 

    - ReadWriteMany 

  storageClassName: ontap-ai-flexvols-retain 

EOF 

$ tridentctl import volume ontap-ai-flexvols dataset_vol -f ./pvc-import-dataset-vol-

kubeflow.yaml -n trident 

+------------------------------------------+--------+--------------------------+----------+------

--------------------------------+--------+---------+ 

|                   NAME                   |  SIZE  |      STORAGE CLASS       | PROTOCOL |             

BACKEND UUID             | STATE  | MANAGED | 

+------------------------------------------+--------+--------------------------+----------+------

--------------------------------+--------+---------+ 

| pvc-3c70ad14-d88f-11e9-b5e2-00505681f3d9 | 10 TiB | ontap-ai-flexvols-retain | file     | 

2942d386-afcf-462e-bf89-1d2aa3376a7b | online | true    | 

+------------------------------------------+--------+--------------------------+----------+------

--------------------------------+--------+---------+ 

$ kubectl get pvc -n kubeflow 

https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/
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NAME                                      STATUS   VOLUME                                     

CAPACITY   ACCESS MODES   STORAGECLASS               AGE 

imagenet-benchmark-job-gblgq-kfpresults   Bound    pvc-a4e32212-d65c-11e9-a043-00505681a82d   1Gi        

RWX            ontap-ai-flexvols-retain   2d19h 

katib-mysql                               Bound    pvc-b07f293e-d028-11e9-9b9d-00505681a82d   

10Gi       RWO            ontap-ai-flexvols-retain   10d 

dataset-vol                               Bound    pvc-43b12235-f32e-4dc4-a7b8-88e90d935a12   

10Ti       ROX            ontap-ai-flexvols-retain   8s 

metadata-mysql                            Bound    pvc-b0f3f032-d028-11e9-9b9d-00505681a82d   

10Gi       RWO            ontap-ai-flexvols-retain   10d 

minio-pv-claim                            Bound    pvc-b22727ee-d028-11e9-9b9d-00505681a82d   

20Gi       RWO            ontap-ai-flexvols-retain   10d 

mysql-pv-claim                            Bound    pvc-b2429afd-d028-11e9-9b9d-00505681a82d   

20Gi       RWO            ontap-ai-flexvols-retain   10d 

3. If the volume on which you wish to store your trained model is not tied to a PVC in the kubeflow 

namespace, then you must import this volume into that namespace. Use the Trident volume import 
functionality to import this volume. The volume must be imported into the kubeflow namespace 

because this is the namespace that pipelines are executed in.  

If your trained model volume is already tied to a PVC in the kubeflow namespace, then you can skip 

this step. If you do not yet have a trained model volume, then you must provision one. See the 
section “Provision a New Volume” for an example showing how to provision a new volume with 
Trident. 

The example commands that follow show the importing of an existing FlexVol volume, named 
kfp_model_vol, into the kubeflow namespace. For more information about PVCs, see the official 

Kubernetes documentation. For more information about the volume import functionality, see the 
Trident documentation. For a detailed example showing the importing of a volume using Trident, see 
the section “Import an Existing Volume.” 

$ cat << EOF > ./pvc-import-dataset-vol-kubeflow.yaml 

kind: PersistentVolumeClaim 

apiVersion: v1 

metadata: 

  name: kfp-model-vol 

  namespace: kubeflow 

spec: 

  accessModes: 

    - ReadWriteMany 

  storageClassName: ontap-ai-flexvols-retain 

EOF 

$ tridentctl import volume ontap-ai-flexvols kfp_model_vol -f ./pvc-import-kfp-model-vol-

kubeflow.yaml -n trident 

+------------------------------------------+--------+--------------------------+----------+------

--------------------------------+--------+---------+ 

|                   NAME                   |  SIZE  |      STORAGE CLASS       | PROTOCOL |             

BACKEND UUID             | STATE  | MANAGED | 

+------------------------------------------+--------+--------------------------+----------+------

--------------------------------+--------+---------+ 

| pvc-3c70ad14-d88f-11e9-b5e2-00505681f3d9 | 10 TiB | ontap-ai-flexvols-retain | file     | 

2942d386-afcf-462e-bf89-1d2aa3376a7b | online | true    | 

+------------------------------------------+--------+--------------------------+----------+------

--------------------------------+--------+---------+ 

$ kubectl get pvc -n kubeflow 

NAME                                      STATUS   VOLUME                                     

CAPACITY   ACCESS MODES   STORAGECLASS               AGE 

imagenet-benchmark-job-gblgq-kfpresults   Bound    pvc-a4e32212-d65c-11e9-a043-00505681a82d   1Gi        

RWX            ontap-ai-flexvols-retain   2d19h 

katib-mysql                               Bound    pvc-b07f293e-d028-11e9-9b9d-00505681a82d   

10Gi       RWO            ontap-ai-flexvols-retain   10d 

kfp-model-vol                             Bound    pvc-236e893b-63b4-40d3-963b-e709b9b2816b   

10Ti       ROX            ontap-ai-flexvols-retain   8s 

metadata-mysql                            Bound    pvc-b0f3f032-d028-11e9-9b9d-00505681a82d   

10Gi       RWO            ontap-ai-flexvols-retain   10d 

minio-pv-claim                            Bound    pvc-b22727ee-d028-11e9-9b9d-00505681a82d   

20Gi       RWO            ontap-ai-flexvols-retain   10d 

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/
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mysql-pv-claim                            Bound    pvc-b2429afd-d028-11e9-9b9d-00505681a82d   

20Gi       RWO            ontap-ai-flexvols-retain   10d 

4. If you have not already done so, you must install the Kubeflow Pipelines SDK. See the official 
Kubeflow documentation for installation instructions. 

5. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands 
that follow show the creation of a pipeline definition script for a pipeline that accepts the following 
parameters at run-time and then executes the following steps. Modify the pipeline definition script as 
needed depending on your specific process. 

Run-time parameters: 

− ontap_cluster_mgmt_hostname: The host name or IP address of the ONTAP cluster on 

which your dataset and model volumes are stored. 

− ontap_cluster_admin_acct_k8s_secret: the name of the Kubernetes secret that was 

created in step 1. 

− ontap_verify_ssl_cert: Denotes whether to verify your cluster’s SSL certificate when 

communicating with the ONTAP API (true/false). 

− dataset_volume_pvc_existing: The name of the Kubernetes PersistentVolumeClaim (PVC) 

in the kubeflow namespace that is tied to the volume that contains the data that you want to use 

to train your model. 

− dataset_volume_pv_existing: the name of the Kubernetes PersistentVolume (PV) object 

that corresponds to the dataset volume PVC. To get the name of the PV, you can run kubectl 

-n kubeflow get pvc. The name of the PV that corresponds to a given PVC can be found in 

the VOLUME column. 

− trained_model_volume_pvc_existing: The name of the Kubernetes 

PersistentVolumeClaim (PVC) in the kubeflow namespace that is tied to the volume on which 

you want to store your trained model. 

− trained_model_volume_pv_existing: The name of the Kubernetes PersistentVolume (PV) 

object that corresponds to the trained model volume PVC. To get the name of the PV, you can 
run kubectl -n kubeflow get pvc. The name of the PV that corresponds to a given PVC 

can be found in the VOLUME column. 

− execute_data_prep_step__yes_or_no: Denotes whether you wish to execute a data prep 

step as part of this particular pipeline execution (yes/no). 

− data_prep_step_container_image: The container image in which you wish to execute your 

data prep step. 

− data_prep_step_command: The command that you want to execute as your data prep step. 

− data_prep_step_dataset_volume_mountpoint: The mountpoint at which you want to 

mount your dataset volume for your data prep step. 

− train_step_container_image: The container image in which you wish to execute your 

training step. 

− train_step_command: The command that you want to execute as your training step. 

− train_step_dataset_volume_mountpoint: The mountpoint at which you want to mount 

your dataset volume for your training step. 

− train_step_model_volume_mountpoint: The mountpoint at which you want to mount your 

model volume for your training step. 

− validation_step_container_image: The container image in which you wish to execute 

your validation step. 

− validation_step_command: The command that you want to execute as your validation step. 

https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
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− validation_step_dataset_volume_mountpoint: the mountpoint at which you want to 

mount your dataset volume for your validation step. 

− validation_step_model_volume_mountpoint: The mountpoint at which you want to 

mount your model volume for your validation step. 

Pipeline steps: 

a. Optional: Execute a data prep step. 

b. Trigger the creation of a Snapshot copy, using NetApp Snapshot technology, of your dataset 
volume.  

 This Snapshot copy is created for traceability purposes. Each time that this pipeline workflow 
is executed, a Snapshot copy is created. Therefore, as long as the Snapshot copy is not 
deleted, it is always possible to trace a specific training run back to the exact training dataset 
that was used for that run. 

c. Execute a training step. 

d. Trigger the creation of a Snapshot copy, using NetApp Snapshot technology, of your trained 
model volume.  

 This Snapshot copy is created for versioning purposes. Each time that this pipeline workflow 
is executed, a Snapshot copy is created. Therefore, for each individual training run, a read-
only versioned copy of the resulting trained model is automatically saved. 

e. Execute a validation step. 

$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git 

$ cd kubeflow_jupyter_pipeline/Pipelines/ 

$ vi ai-training-run.py 

6. Execute the pipeline definition script that you created in step 5 to create a .yaml manifest for your 

pipeline. 

$ python3 ai-training-run.py  

$ ls ai-training-run.py.yaml  

ai-training-run.py.yaml 

7. From the Kubeflow central dashboard, click Pipelines in the main menu to navigate to the Kubeflow 
Pipelines administration page. 

 

8. Click Upload Pipeline to upload your pipeline definition. 
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9. Choose the .yaml manifest for your pipeline that you created in step 6, give your pipeline a name, 

and click Upload. 

  

10. You should now see your new pipeline in the list of pipelines on the pipeline administration page. 
Click your pipeline’s name to view it. 
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11. Review your pipeline to confirm that it looks correct. 
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12. Click Create run to run your pipeline. 

  

13. You are now presented with a screen from which you can start a pipeline run. Create a name for the 
run, enter a description, choose an experiment to file the run under, and choose whether you want to 
initiate a one-off run or schedule a recurring run. 
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14. Define parameters for the run, and then click Start. In the following example, the default values are 
accepted for most parameters. Details for the volume that was imported into the kubeflow 

namespace in step 2 are entered for dataset_volume_pvc_existing and 

dataset_volume_pv_existing. Details for the volume that was imported into the kubeflow 

namespace in step 3 are entered for trained_model_volume_pvc_existing and 

trained_model_volume_pv_existing. Non-AI-related commands are entered for the 

data_prep_step_command, train_step_command, and validation_step_command 

parameters in order to plainly demonstrate the functionality of the pipeline. Note that you defined the 
default values for the parameters within your pipeline definition (see step 5). 
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15. You are now presented with a screen listing all runs that fall under the specific experiment. Click the 
name of the run that you just started to view it. 
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16. At this point, the run is likely still in progress. 

 

17. Confirm that the run completed successfully. When the run is complete, every stage of the pipeline 
shows a green check-mark icon. 
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18. Click a specific stage, and then click Logs to view output for that stage.  
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53 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved. 
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Create a Kubeflow Pipeline to Rapidly Clone a Dataset for a Data Scientist 
Workspace 

Perform the following tasks to define and execute a new Kubeflow Pipeline that takes advantage of 

NetApp FlexClone technology to clone a dataset volume rapidly and efficiently and create a data scientist 

or developer workspace. For more information about Kubeflow Pipelines, see the official Kubeflow 

documentation.  

Note: The example Kubeflow Pipeline that is detailed in this section is not compatible with FlexGroup 
volumes. At the time of this writing, FlexGroup volumes must be cloned by using ONTAP System 
Manager, the ONTAP CLI, or the ONTAP API, and then imported into the Kubernetes cluster. For 
details about importing a volume using Trident, see the section “Import an Existing Volume.”  

1. If you have not already done so, you must install the Kubeflow Pipelines SDK. For installation 
instructions, see the official Kubeflow documentation. 

2. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands 
that follow show the creation of a pipeline definition script for a pipeline that accepts the following 
parameters at run-time and then executes the following steps. Modify the pipeline definition script as 
needed depending on your specific process. 

https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
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Run-time parameters: 

− workspace_name: The name that you want to give to your new workspace. 

− dataset_volume_pvc_existing: The name of the Kubernetes PersistentVolumeClaim (PVC) 

that corresponds to the dataset volume that you wish to clone. 

− dataset_volume_pvc_existing_size: The size of the dataset volume that you wish to 

clone; for example, 10Gi, 100Gi, or 2Ti. 

− trident_storage_class: The Kubernetes StorageClass that the dataset volume you wish to 

clone is associated with. 

− jupyter_namespace: The namespace in which you intend to create a Jupyter Notebook 

workspace. For details about creating a Jupyter Notebook workspace, see the section “Provision 
a Jupyter Notebook Workspace for Data Scientist or Developer Use.” The dataset clone that this 
pipeline creates is mountable in the Jupyter Notebook workspace.  

 The existing dataset volume PVC that you wish to clone from (the value of the 
dataset_volume_pvc_existing parameter) must be in this same namespace. 

Pipeline steps: 

a. Trigger the creation of a clone, using NetApp FlexClone technology, of your dataset volume. 

b. Print instructions for deploying an interactive Jupyter Notebook workspace that has access to the 
dataset clone.  

$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git 

$ cd kubeflow_jupyter_pipeline/Pipelines/  

$ vi create-data-scientist-workspace.py 

3. Execute the pipeline definition script that you created in step 2 to create a .yaml manifest for your 

pipeline. 

$ python3 create-data-scientist-workspace.py  

$ ls create-data-scientist-workspace.py.yaml  

create-data-scientist-workspace.py.yaml 

4. From the Kubeflow central dashboard, click Pipelines in the main menu to navigate to the Kubeflow 
Pipelines administration page. 

 

5. Click Upload Pipeline to upload your pipeline definition. 
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6. Choose the.yaml file containing your pipeline definition that you created in step 3, give your pipeline 

a name, and click Upload. 

  

7. You should now see your new pipeline in the list of pipelines on the pipeline administration page. 
Click your pipeline’s name to view it. 
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8. Review your pipeline to confirm that it looks correct. 

  

9. Click Create run to run your pipeline. 

 

10. You are now presented with a screen from which you can start a pipeline run. Create a name for the 
run, enter a description, select an experiment to file the run under, and select whether you want to 
initiate a one-off run or schedule a recurring run. 
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11. Define parameters for the run, and then click Start. Reference step 2 for details on the individual 
parameters. 

  

12. You are now presented with a screen listing all runs that fall under the specific experiment. Click the 
name of the run that you just started to view it. 
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13. At this point, the run is likely still in progress. 

 

14. Confirm that the run completed successfully. When the run is complete, every stage of the pipeline 
shows a green check-mark icon. 
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15. Click the dataset-clone-for-workspace stage, and then click Logs to view output for that stage. 
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16. Click the print-instructions stage, and then click Logs to view the outputted instructions. See 

the section “Provision a Jupyter Notebook Workspace for Data Scientist or Developer Use” for details 
on creating a Jupyter Notebook workspace. 

 

Create a Kubeflow Pipeline to Trigger a SnapMirror Volume Replication Update 

You can define and execute a new Kubeflow pipeline that takes advantage of NetApp SnapMirror data 

replication technology to replicate the contents of a volume between different ONTAP clusters. 

This pipeline can be used to replicate data of any type between ONTAP clusters that might or might not 

be located at different sites or in different regions. Potential use cases include: 

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the 
cloud to be used for AI/ML model training or retraining.  

• Replicating a newly trained or newly-updated model from the core data center to the edge or to the 
cloud to be deployed as part of an inferencing application. 

For more information about Kubeflow pipelines, see the official Kubeflow documentation. Note that the 

example pipeline that is shown in this section only works with volumes that reside on ONTAP storage 

systems or software-defined instances. 

To create a new Kubeflow pipeline to trigger a SnapMirror volume replication update, perform the 

following steps:  

Note: Before you perform the exercises that are outlined in this section, we assume that you have 
already initiated an asynchronous SnapMirror relationship between the source and the 
destination volume according to standard configuration instructions. For details, refer to official 
NetApp documentation. 

1. If you have not already done so, create a Kubernetes secret containing the username and password 
of the cluster admin account for the ONTAP cluster on which your destination volume resides  

2. This secret must be created in the kubeflow namespace because this is the namespace that 

pipelines are executed in. Replace username and password with your username and password 

when executing these commands and use the output of the base64 commands (see highlighted text) 
in your secret definition accordingly. 

$ echo -n 'username' | base64 

dXNlcm5hbWU= 

$ echo -n 'password' | base64 

cGFzc3dvcmQ= 

$ cat << EOF > ./secret-ontap-cluster-mgmt-account.yaml 

apiVersion: v1 

kind: Secret 

metadata: 

  name: ontap-cluster-mgmt-account 

  namespace: kubeflow 

data: 

  username: dXNlcm5hbWU= 

  password: cGFzc3dvcmQ= 

EOF 

$ kubectl create -f ./secret-ontap-cluster-mgmt-account.yaml 

secret/ontap-cluster-mgmt-account created 

3. If you have not already done so, install the Kubeflow Pipelines SDK. See the official Kubeflow 
documentation for installation instructions. 

https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://docs.netapp.com/
http://docs.netapp.com/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
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4. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands 
that follow show the creation of a pipeline definition script for a pipeline that accepts the following 
parameters at run-time and then executes the following steps. Modify the pipeline definition script as 
needed depending on your specific process. 

Pipeline steps: 

a. Trigger a replication update for the specified asynchronous SnapMirror relationship. 

Run-time parameters: 

− ontap_cluster_mgmt_hostname: The host name or IP address of the ONTAP cluster on 

which the destination volume resides. 

− ontap_cluster_admin_acct_k8s_secret: The name of the Kubernetes secret that was 

created in step 1. 

− ontap_api_verify_ssl_cert: Denotes whether to verify your cluster’s SSL certificate when 

communicating with the ONTAP API (yes/no). 

− source_svm: The name of the SVM on which the source volume resides. 

− source_volume: The name of the source volume (the volume that you are replicating from) on 

the source cluster. 

− destination_svm: The name of the SVM on which the destination volume resides. 

− destination_volume: The name of the destination volume (the volume that you are replicating 

to) on the destination cluster. 

$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git 

$ cd kubeflow_jupyter_pipeline/Pipelines/  

$ vi replicate-data-snapmirror.py  

5. Execute the pipeline definition script that you created in step 4 to create a .yaml manifest for your 

pipeline. 

$ python3 replicate-data-snapmirror.py  

$ ls replicate-data-snapmirror.py.yaml  

replicate-data-snapmirror.py.yaml 

6. Follow steps 7 through 18 from the section “Create a Kubeflow Pipeline to Execute an End-to-End AI 
Training Workflow with Built-in Traceability and Versioning.”  

Be sure to use the .yaml manifest that was created in the previous step (step 5) of this section 

instead of the manifest that was created in the section “Create a Kubeflow Pipeline to Execute an 
End-to-End AI Training Workflow with Built-in Traceability and Versioning.” 

Create a Kubeflow Pipeline to Trigger a Cloud Sync Replication Update 

You can define and execute a new Kubeflow pipeline that takes advantage of NetApp Cloud Sync 

replication technology to replicate data to and from a variety of file and object storage platforms. Potential 

use cases include: 

• Replicating newly-acquired sensor data gathered at the edge back to the core data center or to the 
cloud to be used for AI/ML model training or retraining.  

• Replicating a newly-trained or newly-updated model from the core data center to the edge or to the 
cloud to be deployed as part of an inferencing application. 

• Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the 
training of an AI/ML model. 

• Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML 
training environment for use in the training of an AI/ML model. 

• Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage. 
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• Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance 
AI/ML training environment for use in the training of an AI/ML model. 

For more information about Kubeflow pipelines, see the official Kubeflow documentation.  

Note: The example pipeline that is shown in this section only works with volumes that reside on ONTAP 
storage systems or software-defined instances. 

To create a new Kubeflow pipeline to trigger a Cloud Sync replication update, perform the following steps:  

Note: Before you perform the exercises that are outlined in this section, we assume that you have 
already initiated the Cloud Sync relationship that you wish to trigger an update for. To initiate a 
relationship, visit cloudsync.netapp.com. 

1. If you do not yet have a Cloud Sync API refresh token, access the following URL using your web 
browser to create one: https://services.cloud.netapp.com/refresh-token. 

2. If you have not already done so, create a Kubernetes secret containing your Cloud Sync API refresh 
token. This secret must be created in the kubeflow namespace because this is the namespace that 

pipelines are executed in. Replace <your refresh token> with your refresh token when 

executing these commands and use the output of the base64 command (see highlighted text) in your 
secret definition accordingly. 

$ echo -n '<your refresh token>' | base64 

PHlvdXIgcmVmcmVzaCB0b2tlbj4= 

$ cat << EOF > ./secret-cloud-sync-refresh-token.yaml 

apiVersion: v1 

kind: Secret 

metadata: 

  name: cloud-sync-refresh-token 

  namespace: kubeflow 

data: 

  refreshToken: PHlvdXIgcmVmcmVzaCB0b2tlbj4= 

EOF 

$ kubectl create -f ./secret-cloud-sync-refresh-token.yaml 

secret/ secret-cloud-sync-refresh-token created 

3. If you have not already done so, install the Kubeflow Pipelines SDK. For installation instructions, see 
the official Kubeflow documentation. 

4. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands 
that follow show the creation of a pipeline definition script for a pipeline that accepts the following 
parameters at run-time and then executes the following steps. Modify the pipeline definition script as 
needed depending on your specific process. 

Pipeline steps: 

a. Trigger a replication update for the specified Cloud Sync relationship. 

Run-time parameters: 

− cloud_sync_relationship_id: The relationship ID of the Cloud Sync relationship for which  

you want to trigger an update. If you do not know the relationship ID, you can retrieve it by using 
the Jupyter Notebook that is included in the section “Trigger a Cloud Sync Replication Update 
from Within a Jupyter Notebook” or by directly calling the Relationships-v2 API.  

− cloud_sync_refresh_token_k8s_secret: The name of the Kubernetes secret that was 

created in step 2. 

$ git clone https://github.com/NetApp/kubeflow_jupyter_pipeline.git 

$ cd kubeflow_jupyter_pipeline/Pipelines/ 

$ vi replicate-data-cloud-sync.py 

5. Execute the pipeline definition script that you created in step 4 to create a .yaml manifest for your 

pipeline 

$ python3 replicate-data-cloud-sync.py  

$ ls replicate-data-cloud-sync.py.yaml  

https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://cloudsync.netapp.com/
https://services.cloud.netapp.com/refresh-token
https://www.kubeflow.org/docs/pipelines/sdk/install-sdk/
https://cloudsync.netapp.com/docs/
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replicate-data-cloud-sync.py.yaml 

6. Follow steps 7 through 18 from the section “Create a Kubeflow Pipeline to Execute an End-to-End AI 
Training Workflow with Built-in Traceability and Versioning.”  

Be sure to use the .yaml manifest that was created in the previous step (step 5) of this section 

instead of the manifest that was created in the section “Create a Kubeflow Pipeline to Execute an 
End-to-End AI Training Workflow with Built-in Traceability and Versioning.” 

Apache Airflow Deployment 

NetApp recommends running Apache Airflow on top of Kubernetes. This section describes the tasks that 

you must complete to deploy Airflow in your Kubernetes cluster. 

Note: It is possible to deploy Airflow on platforms other than Kubernetes. Deploying Airflow on platforms 
other than Kubernetes is outside of the scope of this document. 

Prerequisites 

Before you perform the deployment exercise that is outlined in this section, we assume that you have 

already performed the following tasks: 

1. You already have a working Kubernetes cluster. 

2. You have already installed and configured NetApp Trident in your Kubernetes cluster as outlined in 
the section “NetApp Trident Deployment and Configuration.” 

Install Helm 

Airflow is deployed using Helm, a popular package manager for Kubernetes. Before you deploy Airflow, 

you must install Helm on the deployment jump host. To install Helm on the deployment jump host, follow 

the installation instructions in the official Helm documentation. 

Set Default Kubernetes StorageClass 

Before you deploy Airflow, you must designate a default StorageClass within your Kubernetes cluster. 

The Airflow deployment process attempts to provision new persistent volumes using the default 

StorageClass. If no StorageClass is designated as the default StorageClass, then the deployment fails. 

To designate a default StorageClass within your cluster, follow the instructions outlined in the section “Set 

Default Kubernetes StorageClass.” If you have already designated a default StorageClass within your 

cluster, then you can skip this step. 

Use Helm to Deploy Airflow 

To deploy Airflow in your Kubernetes cluster using Helm, perform the following tasks from the deployment 

jump host: 

1. Deploy Airflow using Helm by following the deployment instructions for the official Airflow chart on the 
Helm Hub. The example commands that follow show the deployment of Airflow using Helm. Modify, 
add, and/or remove values in the custom-values.yaml file as needed depending on your 

environment and desired configuration. 

$ cat << EOF > custom-values.yaml 

################################### 

# Airflow - Common Configs 

################################### 

airflow: 

  ## the airflow executor type to use 

  ## 

  executor: "KubernetesExecutor" 

 

https://helm.sh/docs/intro/install/
https://hub.helm.sh/charts/stable/airflow
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  ## environment variables for the web/scheduler/worker Pods (for airflow configs) 

  ## 

  config: 

    AIRFLOW__KUBERNETES__DELETE_WORKER_PODS: "False" 

    AIRFLOW__KUBERNETES__GIT_REPO: "git@github.com:mboglesby/airflow-dev.git" 

    AIRFLOW__KUBERNETES__GIT_BRANCH: master 

    AIRFLOW__KUBERNETES__GIT_DAGS_FOLDER_MOUNT_POINT: "/opt/airflow/dags" 

    AIRFLOW__KUBERNETES__DAGS_VOLUME_SUBPATH: "repo/" 

    AIRFLOW__KUBERNETES__GIT_SSH_KEY_SECRET_NAME: "airflow-git-key" 

    AIRFLOW__KUBERNETES__WORKER_CONTAINER_REPOSITORY: "apache/airflow" 

    AIRFLOW__KUBERNETES__WORKER_CONTAINER_TAG: "1.10.12" 

    AIRFLOW__KUBERNETES__RUN_AS_USER: "50000" 

    AIRFLOW__KUBERNETES__LOGS_VOLUME_CLAIM: "airflow-k8s-exec-logs" 

 

workers: 

  enabled: false # Celery workers 

 

################################### 

# Airflow - WebUI Configs 

################################### 

web: 

  ## configs for the Service of the web Pods 

  ## 

  service: 

    type: NodePort 

 

################################### 

# Airflow - Logs Configs 

################################### 

logs: 

  persistence: 

    enabled: true 

 

################################### 

# Airflow - DAGs Configs 

################################### 

dags: 

  ## configs for the DAG git repository & sync container 

  ## 

  git: 

    ## url of the git repository 

    ## 

    url: "git@github.com:mboglesby/airflow-dev.git" 

 

    ## the branch/tag/sha1 which we clone 

    ## 

    ref: master 

 

    ## the name of a pre-created secret containing files for ~/.ssh/ 

    ## 

    ## NOTE: 

    ## - this is ONLY RELEVANT for SSH git repos 

    ## - the secret commonly includes files: id_rsa, id_rsa.pub, known_hosts 

    ## - known_hosts is NOT NEEDED if `git.sshKeyscan` is true 

    ## 

    secret: "airflow-git-key-files" 

    sshKeyscan: true 

 

    ## the name of the private key file in your `git.secret` 

    ## 

    ## NOTE: 

    ## - this is ONLY RELEVANT for PRIVATE SSH git repos 

    ## 

    privateKeyName: id_rsa 

 

    ## the host name of the git repo 

    ## 

    ## NOTE: 

    ## - this is ONLY REQUIRED for SSH git repos 

    ## 

    ## EXAMPLE: 
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    ##   repoHost: "github.com" 

    ## 

    repoHost: "github.com" 

 

    ## the port of the git repo 

    ## 

    ## NOTE: 

    ## - this is ONLY REQUIRED for SSH git repos 

    ## 

    repoPort: 22 

 

    ## configs for the git-sync container 

    ## 

    gitSync: 

      ## enable the git-sync sidecar container 

      ## 

      enabled: true 

 

      ## the git sync interval in seconds 

      ## 

      refreshTime: 60 

EOF 

$ helm install "airflow" stable/airflow --version "7.10.1" --namespace "airflow" --values 

./custom-values.yaml 

NAME: airflow 

LAST DEPLOYED: Mon Oct  5 18:32:11 2020 

NAMESPACE: airflow 

STATUS: deployed 

REVISION: 1 

TEST SUITE: None 

NOTES: 

Congratulations. You have just deployed Apache Airflow! 

 

1. Get the Airflow Service URL by running these commands: 

   export NODE_PORT=$(kubectl get --namespace airflow -o jsonpath="{.spec.ports[0].nodePort}" 

services airflow-web) 

   export NODE_IP=$(kubectl get nodes --namespace airflow -o 

jsonpath="{.items[0].status.addresses[0].address}") 

   echo http://$NODE_IP:$NODE_PORT/ 

 

2. Open Airflow in your web browser 

2. Confirm that all Airflow pods are up and running. 

$ kubectl -n airflow get pod 

NAME                                 READY   STATUS    RESTARTS   AGE 

airflow-postgresql-0                 1/1     Running   0          38m 

airflow-redis-master-0               1/1     Running   0          38m 

airflow-scheduler-7fb4bf56cc-g88z4   2/2     Running   2          38m 

airflow-web-8f4bdf5fb-hhxr7          2/2     Running   1          38m 

airflow-worker-0                     2/2     Running   0          38m 

3. Obtain the Airflow web service URL by following the instructions that were printed to the console 
when you deployed Airflow using Helm in step 1. 

$ export NODE_PORT=$(kubectl get --namespace airflow -o jsonpath="{.spec.ports[0].nodePort}" 

services airflow-web) 

$ export NODE_IP=$(kubectl get nodes --namespace airflow -o 

jsonpath="{.items[0].status.addresses[0].address}") 

$ echo http://$NODE_IP:$NODE_PORT/ 

http://10.61.188.112:30366/ 

4. Confirm that you can access the Airflow web service. 

http://10.61.188.112:30366/
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Example Apache Airflow Workflows 

This section includes example Apache Airflow DAGs that highlight various NetApp data management 

capabilities and demonstrate how they can be implemented as part of an Airflow workflow. For more 

information on DAGs and for detailed instructions regarding how to define and execute them, refer to the 

official Airflow documentation. 

Implement an End-to-End AI Training Workflow with Built-in Traceability and 
Versioning 

The example DAG outlined in this section implements a workflow that takes advantage of NetApp 

Snapshot technology to integrate rapid and efficient dataset and model versioning and traceability into an 

end-to-end AI/ML model training workflow. 

Prerequisites 

For this DAG to function correctly, you must complete the following prerequisites: 

1. You must have created a connection in Airflow for your ONTAP system.  

https://airflow.apache.org/docs/stable/
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To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI. 
The example screenshot that follows shows the creation of a connection for a specific ONTAP 
system. The following values are required: 

− Conn ID. Unique name for the connection. 

− Host. The host name or IP address of the ONTAP cluster on which your dataset and model 
volumes are stored. 

− Login. Username of the cluster admin account for the ONTAP cluster on which your volumes 
reside. 

− Password. Password of the cluster admin account for the ONTAP cluster on which your volumes 
reside. 

 

2. There must be an existing PersistentVolumeClaim (PVC) in the airflow namespace that is tied to 

the volume that contains the data that you want to use to train your model. 

3. There must be an existing PersistentVolumeClaim (PVC) in the airflow namespace that is tied to 

the volume on which you want to store your trained model. 

DAG Definition 

The Python code excerpt that follows contains the definition for the example DAG. Before executing this 

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS 

section to match your environment. 
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# Airflow DAG Definition: AI Training Run 

# 

# Steps: 

#   1. Data prep job 

#   2. Dataset snapshot (for traceability) 

#   3. Training job 

#   4. Model snapshot (for versioning/baselining) 

#   5. Inference validation job 

 

 

from airflow.utils.dates import days_ago 

from airflow.secrets import get_connections 

from airflow.models import DAG 

from airflow.operators.python_operator import PythonOperator 

from airflow.contrib.operators.kubernetes_pod_operator import KubernetesPodOperator 

from airflow.contrib.kubernetes.pod import Resources 

from airflow.contrib.kubernetes.volume import Volume 

from airflow.contrib.kubernetes.volume_mount import VolumeMount 

 

 

##### DEFINE PARAMETERS: Modify parameter values in this section to match your environment ##### 

 

## Define default args for DAG 

ai_training_run_dag_default_args = { 

    'owner': 'NetApp' 

} 

 

## Define DAG details 

ai_training_run_dag = DAG( 

    dag_id='ai_training_run', 

    default_args=ai_training_run_dag_default_args, 

    schedule_interval=None, 

    start_date=days_ago(2), 

    tags=['training'] 

) 

 

## Define volume details (change values as necessary to match your environment) 

 

# ONTAP system details 

airflowConnectionName = 'ontap_ai'  # Name of the Airflow connection that contains connection 

details for your ONTAP system's cluster admin account 

verifySSLCert = False   # Denotes whether or not to verify the SSL cert when calling the ONTAP 

API 

 

# Dataset volume  

dataset_volume_mount = VolumeMount( 

    'dataset-volume', 

    mount_path='/mnt/dataset', 

    sub_path=None, 

    read_only=False 

) 

dataset_volume_config= { 

    'persistentVolumeClaim': { 

        'claimName': 'dataset-vol' 

    } 

} 

dataset_volume = Volume(name='dataset-volume', configs=dataset_volume_config) 

dataset_volume_pv_name = 'pvc-79e0855a-30a1-4f63-b34c-1029b1df49f6' 

 

# Model volume  

model_volume_mount = VolumeMount( 

    'model-volume', 

    mount_path='/mnt/model', 

    sub_path=None, 

    read_only=False 

) 

model_volume_config= { 

    'persistentVolumeClaim': { 

        'claimName': 'airflow-model-vol' 

    } 

} 
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model_volume = Volume(name='model-volume', configs=model_volume_config) 

model_volume_pv_name = 'pvc-b3e7cb62-2694-45a3-a56d-9fad6b1262e4' 

 

## Define job details (change values as needed) 

 

# Data prep step 

data_prep_step_container_image = "ubuntu:bionic" 

data_prep_step_command = ["echo", "'No data prep command entered'"] # Replace this echo command 

with the data prep command that you wish to execute 

data_prep_step_resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to: 

{'limit_gpu': 1} 

 

# Training step 

train_step_container_image = "nvcr.io/nvidia/tensorflow:20.07-tf1-py3" 

train_step_command = ["echo", "'No training command entered'"] # Replace this echo command with 

the training command that you wish to execute 

train_step_resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to: 

{'limit_gpu': 1} 

 

# Inference validation step 

validate_step_container_image = "nvcr.io/nvidia/tensorflow:20.07-tf1-py3" 

validate_step_command = ["echo", "'No inference validation command entered'"] # Replace this echo 

command with the inference validation command that you wish to execute 

validate_step_resources = {} # Hint: To request that 1 GPU be allocated to job pod, change to: 

{'limit_gpu': 1} 

 

################################################################################################ 

 

 

# Define function that triggers the creation of a NetApp snapshot 

def netappSnapshot(**kwargs) -> str : 

    # Parse args 

    for key, value in kwargs.items() : 

        if key == 'pvName' : 

            pvName = value 

        elif key == 'verifySSLCert' : 

            verifySSLCert = value 

        elif key == 'airflowConnectionName' : 

            airflowConnectionName = value 

 

    # Install netapp_ontap package 

    import sys, subprocess 

    result = subprocess.check_output([sys.executable, '-m', 'pip', 'install', '--user', 'netapp-

ontap']) 

    print(str(result).replace('\\n', '\n')) 

     

    # Import needed functions/classes 

    from netapp_ontap import config as netappConfig 

    from netapp_ontap.host_connection import HostConnection as NetAppHostConnection 

    from netapp_ontap.resources import Volume, Snapshot 

    from datetime import datetime 

    import json 

 

    # Retrieve ONTAP cluster admin account details from Airflow connection 

    connections = get_connections(conn_id = airflowConnectionName) 

    ontapConnection = connections[0]    # Assumes that you only have one connection with the 

specified conn_id configured in Airflow 

    ontapClusterAdminUsername = ontapConnection.login 

    ontapClusterAdminPassword = ontapConnection.password 

    ontapClusterMgmtHostname = ontapConnection.host 

     

    # Configure connection to ONTAP cluster/instance 

    netappConfig.CONNECTION = NetAppHostConnection( 

        host = ontapClusterMgmtHostname, 

        username = ontapClusterAdminUsername, 

        password = ontapClusterAdminPassword, 

        verify = verifySSLCert 

    ) 

     

    # Convert pv name to ONTAP volume name 

    # The following will not work if you specified a custom storagePrefix when creating your 
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    #   Trident backend. If you specified a custom storagePrefix, you will need to update this 

    #   code to match your prefix. 

    volumeName = 'trident_%s' % pvName.replace("-", "_") 

    print('\npv name: ', pvName) 

    print('ONTAP volume name: ', volumeName) 

 

    # Create snapshot; print API response 

    volume = Volume.find(name = volumeName) 

    timestamp = datetime.today().strftime("%Y%m%d_%H%M%S") 

    snapshot = Snapshot.from_dict({ 

        'name': 'airflow_%s' % timestamp, 

        'comment': 'Snapshot created by a Apache Airflow DAG', 

        'volume': volume.to_dict() 

    }) 

    response = snapshot.post() 

    print("\nAPI Response:") 

    print(response.http_response.text) 

 

    # Retrieve snapshot details 

    snapshot.get() 

 

    # Convert snapshot details to JSON string and print 

    snapshotDetails = snapshot.to_dict() 

    print("\nSnapshot Details:") 

    print(json.dumps(snapshotDetails, indent=2)) 

 

    # Return name of newly created snapshot 

    return snapshotDetails['name'] 

 

 

# Define DAG steps/workflow 

with ai_training_run_dag as dag : 

 

    # Define data prep step using Kubernetes Pod operator 

(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator) 

    data_prep = KubernetesPodOperator( 

        namespace='airflow', 

        image=data_prep_step_container_image, 

        cmds=data_prep_step_command, 

        resources = data_prep_step_resources, 

        volumes=[dataset_volume, model_volume], 

        volume_mounts=[dataset_volume_mount, model_volume_mount], 

        name="ai-training-run-data-prep", 

        task_id="data-prep", 

        is_delete_operator_pod=True, 

        hostnetwork=False 

    ) 

 

    # Define step to take a snapshot of the dataset volume for traceability 

    dataset_snapshot = PythonOperator( 

        task_id='dataset-snapshot', 

        python_callable=netappSnapshot, 

        op_kwargs={ 

            'airflowConnectionName': airflowConnectionName,  

            'pvName': dataset_volume_pv_name, 

            'verifySSLCert': verifySSLCert 

        }, 

        dag=dag 

    ) 

 

    # State that the dataset snapshot should be created after the data prep job completes 

    data_prep >> dataset_snapshot 

 

    # Define training step using Kubernetes Pod operator 

(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator) 

    train = KubernetesPodOperator( 

        namespace='airflow', 

        image=train_step_container_image, 

        cmds=train_step_command, 

        resources = train_step_resources, 

        volumes=[dataset_volume, model_volume], 
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        volume_mounts=[dataset_volume_mount, model_volume_mount], 

        name="ai-training-run-train", 

        task_id="train", 

        is_delete_operator_pod=True, 

        hostnetwork=False 

    ) 

 

    # State that training job should be executed after dataset volume snapshot is taken 

    dataset_snapshot >> train 

 

    # Define step to take a snapshot of the model volume for versioning/baselining 

    model_snapshot = PythonOperator( 

        task_id='model-snapshot', 

        python_callable=netappSnapshot, 

        op_kwargs={ 

            'airflowConnectionName': airflowConnectionName, 

            'pvName': model_volume_pv_name, 

            'verifySSLCert': verifySSLCert 

        }, 

        dag=dag 

    ) 

 

    # State that the model snapshot should be created after the training job completes 

    train >> model_snapshot 

 

    # Define inference validation step using Kubernetes Pod operator 

(https://airflow.apache.org/docs/stable/kubernetes.html#kubernetespodoperator) 

    validate = KubernetesPodOperator( 

        namespace='airflow', 

        image=validate_step_container_image, 

        cmds=validate_step_command, 

        resources = validate_step_resources, 

        volumes=[dataset_volume, model_volume], 

        volume_mounts=[dataset_volume_mount, model_volume_mount], 

        name="ai-training-run-validate", 

        task_id="validate", 

        is_delete_operator_pod=True, 

        hostnetwork=False 

    ) 

 

    # State that inference validation job should be executed after model volume snapshot is taken 

    model_snapshot >> validate 

Rapidly Clone a Dataset to create a Data Scientist Workspace 

The example DAG outlined in this section implements a workflow that takes advantage of NetApp 

FlexClone technology to clone a dataset volume rapidly and efficiently and create a data scientist or 

developer workspace. 

Prerequisites 

For this DAG to function correctly, you must complete the following prerequisites: 

1. You must have created a connection in Airflow for your ONTAP system as outlined in Prerequisite #1 
in the section “Implement an End-to-End AI Training Workflow with Built-in Traceability and 
Versioning.” 

2. You must have created a connection in Airflow for a host that is accessible via SSH and on which 
tridentctl, the NetApp Trident management utility, is installed and configured to point to your 

Kubernetes cluster. 

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI. 
The example screenshot that follows shows the creation of a connection for a specific host on which 
tridentctl is installed and configured. The following values are required: 

− Conn ID. Unique name for the connection. 

− Conn Type. Must be set to ‘SSH’. 
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− Host. The host name or IP address of the host. 

− Login. Username to use when accessing the host via SSH. 

− Password. Password to use when accessing the host via SSH. 

 

3. There must be an existing PersistentVolumeClaim (PVC) within your Kubernetes cluster that is tied to 
the volume that contains the dataset that you wish to clone. 

DAG Definition 

The Python code excerpt that follows contains the definition for the example DAG. Before executing this 

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS 

section to match your environment. 

# Airflow DAG Definition: Create Data Scientist Workspace 

# 

# Steps: 

#   1. Clone source volume 

#   2. Import clone into Kubernetes using Trident 

 

 

from airflow.utils.dates import days_ago 

from airflow.secrets import get_connections 

from airflow.models import DAG 

from airflow.operators.python_operator import PythonOperator 

from airflow.contrib.operators.ssh_operator import SSHOperator 
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from datetime import datetime 

 

 

##### DEFINE PARAMETERS: Modify parameter values in this section to match your environment ##### 

 

## Define default args for DAG 

create_data_scientist_workspace_dag_default_args = { 

    'owner': 'NetApp' 

} 

 

## Define DAG details 

create_data_scientist_workspace_dag = DAG( 

    dag_id='create_data_scientist_workspace', 

    default_args=create_data_scientist_workspace_dag_default_args, 

    schedule_interval=None, 

    start_date=days_ago(2), 

    tags=['dev-workspace'] 

) 

 

## Define volume details (change values as necessary to match your environment) 

 

# ONTAP system details 

ontapAirflowConnectionName = 'ontap_ai'  # Name of the Airflow connection that contains 

connection details for your ONTAP system's cluster admin account 

verifySSLCert = False   # Denotes whether or not to verify the SSL cert when calling the ONTAP 

API 

 

# Source volume details 

sourcePvName = 'pvc-79e0855a-30a1-4f63-b34c-1029b1df49f6' # Name of Kubernetes PV corresponding 

to source volume 

 

# Clone volume details (details for the new clone that you will be creating) 

timestampForVolumeName = datetime.today().strftime("%Y%m%d_%H%M%S") 

cloneVolumeName = 'airflow_clone_%s' % timestampForVolumeName 

clonePvcNamespace = 'airflow'   # Kubernetes namespace that you want the new clone volume to be 

imported into 

 

## Define tridentctl jumphost details (change values as necessary to match your environment) 

tridentctlAirflowConnectionName = 'tridentctl_jumphost' # Name of the Airflow connection of type 

'ssh' that contains connection details for a jumphost on which tridentctl is installed 

 

## Define Trident details 

tridentStorageClass = 'ontap-flexvol'   # Kubernetes StorageClass that you want to use when 

importing the new clone volume 

tridentNamespace = 'trident'    # Namespace that Trident is installed in 

tridentBackend = 'ontap-flexvol'    # Trident backend that you want to use when importing the new 

clone volume 

 

################################################################################################ 

 

 

# Define function that clones a NetApp volume 

def netappClone(task_instance, **kwargs) -> str : 

    # Parse args 

    for key, value in kwargs.items() : 

        if key == 'sourcePvName' : 

            sourcePvName = value 

        elif key == 'verifySSLCert' : 

            verifySSLCert = value 

        elif key == 'airflowConnectionName' : 

            airflowConnectionName = value 

        elif key == 'cloneVolumeName' : 

            cloneVolumeName = value 

 

    # Install netapp_ontap package 

    import sys, subprocess 

    result = subprocess.check_output([sys.executable, '-m', 'pip', 'install', '--user', 'netapp-

ontap']) 

    print(str(result).replace('\\n', '\n')) 

     

    # Import needed functions/classes 
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    from netapp_ontap import config as netappConfig 

    from netapp_ontap.host_connection import HostConnection as NetAppHostConnection 

    from netapp_ontap.resources import Volume, Snapshot 

    from datetime import datetime 

    import json 

 

    # Retrieve ONTAP cluster admin account details from Airflow connection 

    connections = get_connections(conn_id = airflowConnectionName) 

    ontapConnection = connections[0]    # Assumes that you only have one connection with the 

specified conn_id configured in Airflow 

    ontapClusterAdminUsername = ontapConnection.login 

    ontapClusterAdminPassword = ontapConnection.password 

    ontapClusterMgmtHostname = ontapConnection.host 

     

    # Configure connection to ONTAP cluster/instance 

    netappConfig.CONNECTION = NetAppHostConnection( 

        host = ontapClusterMgmtHostname, 

        username = ontapClusterAdminUsername, 

        password = ontapClusterAdminPassword, 

        verify = verifySSLCert 

    ) 

     

    # Convert pv name to ONTAP volume name 

    # The following will not work if you specified a custom storagePrefix when creating your 

    #   Trident backend. If you specified a custom storagePrefix, you will need to update this 

    #   code to match your prefix. 

    sourceVolumeName = 'trident_%s' % sourcePvName.replace("-", "_") 

    print('\nSource pv name: ', sourcePvName) 

    print('Source ONTAP volume name: ', sourceVolumeName) 

 

    # Create clone 

    sourceVolume = Volume.find(name = sourceVolumeName) 

    cloneVolume = Volume.from_dict({ 

        'name': cloneVolumeName, 

        'svm': sourceVolume.to_dict()['svm'], 

        'clone': { 

            'is_flexclone':'true', 

            'parent_volume': sourceVolume.to_dict() 

        }, 

        'nas': { 

            'path': '/%s' % cloneVolumeName 

        } 

    }) 

    response = cloneVolume.post() 

    print("\nAPI Response:") 

    print(response.http_response.text) 

 

    # Retrieve clone volume details 

    cloneVolume.get() 

 

    # Convert clone volume details to JSON string 

    cloneVolumeDetails = cloneVolume.to_dict() 

    print("\nClone Volume Details:") 

    print(json.dumps(cloneVolumeDetails, indent=2)) 

 

    # Create PVC name that resembles volume name and push as XCom for future use 

    task_instance.xcom_push(key = 'clone_pvc_name', value = 

cloneVolumeDetails['name'].replace('_', '-')) 

 

    # Return name of new clone volume 

    return cloneVolumeDetails['name'] 

 

 

# Define DAG steps/workflow 

with create_data_scientist_workspace_dag as dag : 

 

    # Define step to clone source volume 

    clone_source = PythonOperator( 

        task_id='clone-source', 

        provide_context=True, 

        python_callable=netappClone, 
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        op_kwargs={ 

            'airflowConnectionName': ontapAirflowConnectionName,  

            'sourcePvName': sourcePvName, 

            'verifySSLCert': verifySSLCert, 

            'cloneVolumeName': cloneVolumeName 

        }, 

        dag=dag 

    ) 

 

    # Define step to import clone into Kubernetes using Trident 

    cloneVolumeName = "{{ task_instance.xcom_pull(task_ids='clone-source', key='return_value') 

}}" 

    clonePvcName = "{{ task_instance.xcom_pull(task_ids='clone-source', key='clone_pvc_name') }}" 

    import_command = '''cat << EOD > import-pvc-%s.yaml && tridentctl -n %s import volume %s %s -

f ./import-pvc-%s.yaml && rm -f import-pvc-%s.yaml 

kind: PersistentVolumeClaim 

apiVersion: v1 

metadata: 

  name: %s 

  namespace: %s 

spec: 

  accessModes: 

    - ReadWriteMany 

  storageClassName: %s 

EOD''' % (clonePvcName, tridentNamespace, tridentBackend, cloneVolumeName, clonePvcName, 

clonePvcName, clonePvcName, clonePvcNamespace, tridentStorageClass) 

    import_clone = SSHOperator( 

        task_id="import-clone", 

        command=import_command, 

        ssh_conn_id=tridentctlAirflowConnectionName 

    ) 

 

    # State that the import step should be executed after the initial clone step completes 

    clone_source >> import_clone 

Trigger a SnapMirror Volume Replication Update 

The example DAG outlined in this section implements a workflow that takes advantage of NetApp 

SnapMirror data replication technology to replicate the contents of a volume between different ONTAP 

clusters. 

This pipeline can be used to replicate data of any type between ONTAP clusters that might or might not 

be located at different sites or in different regions. Potential use cases include the following: 

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the 
cloud to be used for AI/ML model training or retraining.  

• Replicating a newly trained or newly updated model from the core data center to the edge or to the 
cloud to be deployed as part of an inferencing application. 

Prerequisites 

For this DAG to function correctly, you must complete the following prerequisites. 

• You must have created a connection in Airflow for your ONTAP system as outlined in Prerequisite #1 
in the section “Implement an End-to-End AI Training Workflow with Built-in Traceability and 
Versioning.” 

• You must have already initiated an asynchronous SnapMirror relationship between the source and 
the destination volume according to standard configuration instructions. For details, refer to official 
NetApp documentation. 

http://docs.netapp.com/
http://docs.netapp.com/
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DAG Definition 

The Python code excerpt that follows contains the definition for the example DAG. Before executing this 

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS 

section to match your environment. 

# Airflow DAG Definition: Replicate Data - SnapMirror 

# 

# Steps: 

#   1. Trigger NetApp SnapMirror update 

 

 

from airflow.utils.dates import days_ago 

from airflow.secrets import get_connections 

from airflow.models import DAG 

from airflow.operators.python_operator import PythonOperator 

 

 

##### DEFINE PARAMETERS: Modify parameter values in this section to match your environment ##### 

 

## Define default args for DAG 

replicate_data_snapmirror_dag_default_args = { 

    'owner': 'NetApp' 

} 

 

## Define DAG details 

replicate_data_snapmirror_dag = DAG( 

    dag_id='replicate_data_snapmirror', 

    default_args=replicate_data_snapmirror_dag_default_args, 

    schedule_interval=None, 

    start_date=days_ago(2), 

    tags=['data-movement'] 

) 

 

## Define SnapMirror details (change values as necessary to match your environment) 

 

# Destination ONTAP system details 

airflowConnectionName = 'ontap_ai'  # Name of the Airflow connection that contains connection 

details for the destination ONTAP system's cluster admin account 

verifySSLCert = False   # Denotes whether or not to verify the SSL cert when calling the ONTAP 

API 

 

# SnapMirror relationship details (existing SnapMirroer relationship for which you want to 

trigger an update) 

sourceSvm = "ailab" 

sourceVolume = "sm" 

destinationSvm = "ai221_data" 

destinationVolume = "sm_dest" 

 

################################################################################################ 

 

 

# Define function that triggers a NetApp SnapMirror update 

def netappSnapMirrorUpdate(**kwargs) -> int : 

    # Parse args 

    for key, value in kwargs.items() : 

        if key == 'sourceSvm' : 

            sourceSvm = value 

        elif key == 'sourceVolume' : 

            sourceVolume = value 

        elif key == 'destinationSvm' : 

            destinationSvm = value 

        elif key == 'destinationVolume' : 

            destinationVolume = value 

        elif key == 'verifySSLCert' : 

            verifySSLCert = value 

        elif key == 'airflowConnectionName' : 

            airflowConnectionName = value 

 

    # Install ansible package 
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    import sys, subprocess, os 

    print("Installing required Python modules:\n") 

    result = subprocess.check_output([sys.executable, '-m', 'pip', 'install', '--user', 

'ansible', 'netapp-lib']) 

    print(str(result).replace('\\n', '\n')) 

     

    # Retrieve ONTAP cluster admin account details from Airflow connection 

    connections = get_connections(conn_id = airflowConnectionName) 

    ontapConnection = connections[0]    # Assumes that you only have one connection with the 

specified conn_id configured in Airflow 

    ontapClusterAdminUsername = ontapConnection.login 

    ontapClusterAdminPassword = ontapConnection.password 

    ontapClusterMgmtHostname = ontapConnection.host 

     

    # Define temporary Ansible playbook for triggering SnapMirror update 

    snapMirrorPlaybookContent = """ 

--- 

- name: "Trigger SnapMirror Update" 

  hosts: localhost 

  tasks: 

  - name: update snapmirror 

    na_ontap_snapmirror: 

      state: present 

      source_path: '%s:%s' 

      destination_path: '%s:%s' 

      hostname: '%s' 

      username: '%s' 

      password: '%s' 

      https: 'yes' 

      validate_certs: '%s'""" % (sourceSvm, sourceVolume, destinationSvm, destinationVolume, 

ontapClusterMgmtHostname,  

        ontapClusterAdminUsername, ontapClusterAdminPassword, str(verifySSLCert)) 

    print("Creating temporary Ansible playbook.\n") 

    snapMirrorPlaybookFilepath = "/home/airflow/snapmirror-update.yaml" 

    snapMirrorPlaybookFile = open(snapMirrorPlaybookFilepath, "w") 

    snapMirrorPlaybookFile.write(snapMirrorPlaybookContent) 

    snapMirrorPlaybookFile.close() 

 

    # Trigger SnapMirror update 

    print("Executing Ansible playbook to trigger SnapMirror update:\n") 

    try : 

        result = subprocess.check_output(['ansible-playbook', snapMirrorPlaybookFilepath]) 

        print(str(result).replace('\\n', '\n')) 

    except Exception as e : 

        print("Exception:", str(e).strip()) 

        print("Removing temporary Ansible playbook.") 

        os.remove(snapMirrorPlaybookFilepath) # Remove temporary Ansible playbook before exiting 

        raise 

 

    # Remove temporary Ansible playbook before exiting 

    print("Removing temporary Ansible playbook.\n") 

    os.remove(snapMirrorPlaybookFilepath) 

 

    # Return success code 

    return 0 

 

 

# Define DAG steps/workflow 

with replicate_data_snapmirror_dag as dag : 

 

    # Define step to trigger a NetApp SnapMirror update 

    trigger_snapmirror = PythonOperator( 

        task_id='trigger-snapmirror', 

        python_callable=netappSnapMirrorUpdate, 

        op_kwargs={ 

            'airflowConnectionName': airflowConnectionName, 

            'verifySSLCert': verifySSLCert, 

            'sourceSvm': sourceSvm, 

            'sourceVolume': sourceVolume, 

            'destinationSvm': destinationSvm, 

            'destinationVolume': destinationVolume 
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        }, 

        dag=dag 

    ) 

Trigger a Cloud Sync Replication Update 

The example DAG outlined in this section implements a workflow that takes advantage of NetApp Cloud 

Sync replication technology to replicate data to and from a variety of file and object storage platforms. 

Potential use cases include the following: 

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the 
cloud to be used for AI/ML model training or retraining.  

• Replicating a newly trained or newly updated model from the core data center to the edge or to the 
cloud to be deployed as part of an inferencing application. 

• Copying data from an S3 data lake to a high-performance AI/ML training environment for use in the 
training of an AI/ML model. 

• Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML 
training environment for use in the training of an AI/ML model. 

• Saving a new version of a trained model to an S3 or Hadoop data lake for permanent storage. 

• Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance 
AI/ML training environment for use in the training of an AI/ML model. 

Prerequisites 

For this DAG to function correctly, you must complete the following prerequisites. 

1. You must have created a connection in Airflow for the NetApp Cloud Sync API.  

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI. 
The example screenshot that follows shows the creation of a connection for the Cloud Sync API. The 
following values are required: 

− Conn ID. Unique name for the connection. 

− Password. Your Cloud Sync API refresh token. 
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2. You must have already initiated the Cloud Sync relationship that you wish to trigger an update for. To 
initiate a relationship, visit cloudsync.netapp.com. 

DAG Definition 

The Python code excerpt that follows contains the definition for the example DAG. Before executing this 

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS 

section to match your environment. 

# Airflow DAG Definition: Replicate Data - Cloud Sync 

# 

# Steps: 

#   1. Trigger NetApp Cloud Sync update 

 

 

from airflow.utils.dates import days_ago 

from airflow.secrets import get_connections 

from airflow.models import DAG 

from airflow.operators.python_operator import PythonOperator 

 

 

##### DEFINE PARAMETERS: Modify parameter values in this section to match your environment ##### 

 

## Define default args for DAG 

replicate_data_cloud_sync_dag_default_args = { 

    'owner': 'NetApp' 

http://cloudsync.netapp.com/
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} 

 

## Define DAG details 

replicate_data_cloud_sync_dag = DAG( 

    dag_id='replicate_data_cloud_sync', 

    default_args=replicate_data_cloud_sync_dag_default_args, 

    schedule_interval=None, 

    start_date=days_ago(2), 

    tags=['data-movement'] 

) 

 

## Define Cloud Sync details (change values as necessary to match your environment) 

 

# Cloud Sync refresh token details 

airflowConnectionName = 'cloud_sync'  # Name of the Airflow connection that contains your Cloud 

Sync refresh token 

 

# Cloud Sync relationship details (existing Cloud Sync relationship for which you want to trigger 

an update) 

relationshipId = '5ed00996ca85650009a83db2' 

 

################################################################################################ 

 

 

## Function for triggering an update for a specific Cloud Sync relationship 

def netappCloudSyncUpdate(**kwargs) : 

    # Parse args 

    printResponse = False # Default value 

    keepCheckingUntilComplete = True # Default value 

    for key, value in kwargs.items() : 

        if key == 'relationshipId' : 

            relationshipId = value 

        elif key == 'printResponse' : 

            printResponse = value 

        elif key == 'keepCheckingUntilComplete' : 

            keepCheckingUntilComplete = value 

        elif key == 'airflowConnectionName' : 

            airflowConnectionName = value 

     

    # Install requests module 

    import sys, subprocess 

    subprocess.run([sys.executable, '-m', 'pip', 'install', 'requests']) 

 

    # Import needed modules 

    import requests, json, time 

 

 

    ## API response error class; objects of this class will be raised when an API resposne is not 

as expected 

    class APIResponseError(Exception) : 

        '''Error that will be raised when an API response is not as expected''' 

        pass 

 

 

    ## Generic function for printing an API response 

    def printAPIResponse(response: requests.Response) : 

        print("API Response:") 

        print("Status Code: ", response.status_code) 

        print("Header: ", response.headers) 

        if response.text : 

            print("Body: ", response.text) 

 

 

    ## Function for obtaining access token and account ID for calling Cloud Sync API 

    def netappCloudSyncAuth(refreshToken: str) : 

        ## Step 1: Obtain limited time access token using refresh token 

 

        # Define parameters for API call 

        url = "https://netapp-cloud-account.auth0.com/oauth/token" 

        headers = { 

            "Content-Type": "application/json" 
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        } 

        data = { 

            "grant_type": "refresh_token", 

            "refresh_token": refreshToken, 

            "client_id": "Mu0V1ywgYteI6w1MbD15fKfVIUrNXGWC" 

        } 

 

        # Call API to optain access token 

        response = requests.post(url = url, headers = headers, data = json.dumps(data)) 

 

        # Parse response to retrieve access token 

        try : 

            responseBody = json.loads(response.text) 

            accessToken = responseBody["access_token"] 

        except : 

            errorMessage = "Error obtaining access token from Cloud Sync API" 

            raise APIResponseError(errorMessage, response) 

 

        ## Step 2: Obtain account ID 

 

        # Define parameters for API call 

        url = "https://cloudsync.netapp.com/api/accounts" 

        headers = { 

            "Content-Type": "application/json", 

            "Authorization": "Bearer " + accessToken 

        } 

 

        # Call API to obtain account ID 

        response = requests.get(url = url, headers = headers) 

 

        # Parse response to retrieve account ID 

        try : 

            responseBody = json.loads(response.text) 

            accountId = responseBody[0]["accountId"] 

        except : 

            errorMessage = "Error obtaining account ID from Cloud Sync API" 

            raise APIResponseError(errorMessage, response) 

 

        # Return access token and account ID 

        return accessToken, accountId 

 

 

    ## Function for monitoring the progress of the latest update for a specific Cloud Sync 

relationship 

    def netappCloudSyncMonitor(refreshToken: str, relationshipId: str, keepCheckingUntilComplete: 

bool = True, printProgress: bool = True, printResponses: bool = False) : 

        # Step 1: Obtain access token and account ID for accessing Cloud Sync API 

        try : 

            accessToken, accountId = netappCloudSyncAuth(refreshToken = refreshToken) 

        except APIResponseError as err: 

            if printResponse : 

                errorMessage = err.args[0] 

                response = err.args[1] 

                print(errorMessage) 

                printAPIResponse(response) 

            raise    

 

        # Step 2: Obtain status of the latest update; optionally, keep checking until the latest 

update has completed    

 

        while True : 

            # Define parameters for API call 

            url = "https://cloudsync.netapp.com/api/relationships-v2/%s" % (relationshipId) 

            headers = { 

                "Accept": "application/json", 

                "x-account-id": accountId, 

                "Authorization": "Bearer " + accessToken 

            }    

 

            # Call API to obtain status of latest update 

            response = requests.get(url = url, headers = headers) 
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            # Print API response 

            if printResponses : 

                printAPIResponse(response) 

 

            # Parse response to retrieve status of latest update 

            try : 

                responseBody = json.loads(response.text) 

                latestActivityType = responseBody["activity"]["type"] 

                latestActivityStatus = responseBody["activity"]["status"] 

            except : 

                errorMessage = "Error retrieving status of latest update from Cloud Sync API" 

                raise APIResponseError(errorMessage, response) 

             

            # End execution if the latest update is complete 

            if latestActivityType == "Sync" and latestActivityStatus == "DONE" : 

                if printProgress : 

                    print("Success: Cloud Sync update is complete.") 

                break 

 

            # Print message re: progress 

            if printProgress : 

                print("Cloud Sync update is not yet complete.") 

 

            # End execution if calling program doesn't want to monitor until the latest update 

has completed 

            if not keepCheckingUntilComplete : 

                break 

 

            # Sleep for 60 seconds before checking progress again 

            print("Checking again in 60 seconds...") 

            time.sleep(60) 

 

 

    # Retrieve Cloud Sync refresh token from Airflow connection 

    connections = get_connections(conn_id = airflowConnectionName) 

    cloudSyncConnection = connections[0]    # Assumes that you only have one connection with the 

specified conn_id configured in Airflow 

    refreshToken = cloudSyncConnection.password 

     

    # Step 1: Obtain access token and account ID for accessing Cloud Sync API 

    try : 

        accessToken, accountId = netappCloudSyncAuth(refreshToken = refreshToken) 

    except APIResponseError as err: 

        errorMessage = err.args[0] 

        response = err.args[1] 

        print(errorMessage) 

        if printResponse : 

            printAPIResponse(response) 

        raise 

 

    # Step 2: Trigger Cloud Sync update 

 

    # Define parameters for API call 

    url = "https://cloudsync.netapp.com/api/relationships/%s/sync" % (relationshipId) 

    headers = { 

        "Content-Type": "application/json", 

        "Accept": "application/json", 

        "x-account-id": accountId, 

        "Authorization": "Bearer " + accessToken 

    } 

 

    # Call API to trigger update 

    print("Triggering Cloud Sync update.") 

    response = requests.put(url = url, headers = headers) 

 

    # Check for API response status code of 202; if not 202, raise error 

    if response.status_code != 202 : 

        errorMessage = "Error calling Cloud Sync API to trigger update." 

        if printResponse : 

            print(errorMessage) 
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            printAPIResponse(response) 

        raise APIResponseError(errorMessage, response) 

 

    # Print API response 

    if printResponse : 

        print("Note: Status Code 202 denotes that update was successfully triggered.") 

        printAPIResponse(response) 

     

    print("Checking progress.") 

    netappCloudSyncMonitor(refreshToken = refreshToken, relationshipId = relationshipId, 

keepCheckingUntilComplete = keepCheckingUntilComplete, printResponses = printResponse) 

 

 

# Define DAG steps/workflow 

with replicate_data_cloud_sync_dag as dag : 

 

    # Define step to trigger a NetApp Cloud Sync update 

    trigger_cloud_sync = PythonOperator( 

        task_id='trigger-cloud-sync', 

        python_callable=netappCloudSyncUpdate, 

        op_kwargs={ 

            'airflowConnectionName': airflowConnectionName, 

            'relationshipId': relationshipId 

        }, 

        dag=dag 

    ) 

Trigger an XCP Copy or Sync Operation 

The example DAG outlined in this section implements a workflow that invokes NetApp XCP to quickly and 

reliably replicate data between NFS endpoints. Potential use cases include the following: 

• Replicating newly acquired sensor data gathered at the edge back to the core data center or to the 
cloud to be used for AI/ML model training or retraining.  

• Replicating a newly trained or newly updated model from the core data center to the edge or to the 
cloud to be deployed as part of an inferencing application. 

• Copying data from a Hadoop data lake (through Hadoop NFS Gateway) to a high-performance AI/ML 
training environment for use in the training of an AI/ML model. 

• Copying NFS-accessible data from a legacy or non-NetApp system of record to a high-performance 
AI/ML training environment for use in the training of an AI/ML model. 

Prerequisites 

For this DAG to function correctly, you must complete the following prerequisites. 

1. You must have created a connection in Airflow for a host that is accessible via SSH and on which 
NetApp XCP is installed and configured. For details regarding how to install and configure NetApp 
XCP, refer to the NetApp XCP homepage and the official NetApp XCP documentation. 

To manage connections in Airflow, navigate to Admin > Connections in the Airflow web service UI. 
The example screenshot that follows shows the creation of a connection for a specific host on which 
NetApp XCP is installed and configured. The following values are required: 

− Conn ID. Unique name for the connection. 

− Conn Type. Must be set to SSH. 

− Host. The host name or IP address of the host. 

− Login. Username to use when accessing the host via SSH. 

− Password. Password to use when accessing the host via SSH. 

http://xcp.netapp.com/
https://mysupport.netapp.com/documentation/productlibrary/index.html?productID=63064
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DAG Definition 

The Python code excerpt that follows contains the definition for the example DAG. Before executing this 

example DAG in your environment, you must modify the parameter values in the DEFINE PARAMETERS 

section to match your environment. 

# Airflow DAG Definition: Replicate Data - XCP 

# 

# Steps: 

#   1. Invoke NetApp XCP copy or sync operation 

 

 

from airflow.utils.dates import days_ago 

from airflow.secrets import get_connections 

from airflow.models import DAG 

from airflow.operators.python_operator import PythonOperator 

from airflow.contrib.operators.ssh_operator import SSHOperator 

from datetime import datetime 

 

 

##### DEFINE PARAMETERS: Modify parameter values in this section to match your environment ##### 

 

## Define default args for DAG 

replicate_data_xcp_dag_default_args = { 

    'owner': 'NetApp' 

} 

 



86 NetApp AI Control Plane © 2020 NetApp, Inc. All Rights Reserved. 

 

## Define DAG details 

replicate_data_xcp_dag = DAG( 

    dag_id='replicate_data_xcp', 

    default_args=replicate_data_xcp_dag_default_args, 

    schedule_interval=None, 

    start_date=days_ago(2), 

    tags=['data-movement'] 

) 

 

## Define xcp operation details (change values as necessary to match your environment and desired 

operation) 

 

# Define xcp operation to perform 

xcpOperation = 'sync' # Must be 'copy' or 'sync' 

 

# Define source and destination for copy operation 

xcpCopySource = '192.168.200.41:/trident_pvc_957318e1_9b73_4e16_b857_dca7819dd263' 

xcpCopyDestination = '192.168.200.41:/trident_pvc_9e7607c2_29c8_4dbf_9b08_551ba72d0273' 

 

# Define catalog id for sync operation 

xcpSyncId = 'autoname_copy_2020-10-06_16.37.44.963391' 

 

## Define xcp host details (change values as necessary to match your environment) 

xcpAirflowConnectionName = 'xcp_host' # Name of the Airflow connection of type 'ssh' that 

contains connection details for a host on which xcp is installed, configured, and accessible 

within $PATH 

 

################################################################################################ 

 

 

# Construct xcp command 

xcpCommand = 'xcp help' 

if xcpOperation == 'copy' : 

    xcpCommand = 'xcp copy ' + xcpCopySource + ' ' + xcpCopyDestination 

elif xcpOperation == 'sync' : 

    xcpCommand = 'xcp sync -id ' + xcpSyncId 

 

 

# Define DAG steps/workflow 

with replicate_data_xcp_dag as dag : 

 

    # Define step to invoke a NetApp XCP copy or sync operation 

    invoke_xcp = SSHOperator( 

        task_id="invoke-xcp", 

        command=xcpCommand, 

        ssh_conn_id=xcpAirflowConnectionName 

    ) 

Example Basic Trident Operations 

This section includes examples of various operations that you may want to perform on your Kubernetes 

cluster. 

Import an Existing Volume 

If there are existing volumes on your NetApp storage system/platform that you want to mount on 

containers within your Kubernetes cluster, but that are not tied to PVCs in the cluster, then you must 

import these volumes. You can use the Trident volume import functionality to import these volumes. 

The example commands that follow show the importing of the same volume, named pb_fg_all, twice, 

once for each Trident backend that was created in the example in the section “Example Trident Backends 

for ONTAP AI Deployments”, step 1. Importing the same volume twice in this manner enables you to 

mount the volume (an existing FlexGroup volume) multiple times across different LIFs, as described in the 

section “Example Trident Backends for ONTAP AI Deployments,” step 1. For more information about 
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PVCs, see the official Kubernetes documentation. For more information about the volume import 

functionality, see the Trident documentation. 

Note: An accessModes value of ReadOnlyMany is specified in the example PVC spec files. This 
value means that multiple pods can mount these volumes at the same time and that access will 
be read-only. For more information about the accessMode field, see the official Kubernetes 
documentation. 

Note: The backend names that are specified in the following example import commands are highlighted 
for reference. These names correspond to the backends that were created in the example in the 
section “Example Trident Backends for ONTAP AI Deployments,” step 1. 

Note: The StorageClass names that are specified in the following example PVC definition files are 
highlighted for reference. These names correspond to the StorageClasses that were created in 
the example in the section “Example Kubernetes StorageClasses for ONTAP AI Deployments,” 
step 1. 

$ cat << EOF > ./pvc-import-pb_fg_all-iface1.yaml 

kind: PersistentVolumeClaim 

apiVersion: v1 

metadata: 

  name: pb-fg-all-iface1 

  namespace: default 

spec: 

  accessModes: 

    - ReadOnlyMany 

  storageClassName: ontap-ai-flexgroups-retain-iface1  

EOF 

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-import-pb_fg_all-

iface1.yaml -n trident 

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+ 

|          NAME                  |  SIZE  |       STORAGE CLASS               | PROTOCOL |             

BACKEND UUID                         | STATE  | MANAGED | 

+--------------------------------+--------+-----------------------------------+----------+-------

-----------------------------------+--------+---------+ 

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-iface1 | file     | 

b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true    | 

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+ 

$ cat << EOF > ./pvc-import-pb_fg_all-iface2.yaml 

kind: PersistentVolumeClaim 

apiVersion: v1 

metadata: 

  name: pb-fg-all-iface2 

  namespace: default 

spec: 

  accessModes: 

    - ReadOnlyMany 

  storageClassName: ontap-ai-flexgroups-retain-iface2  

EOF 

$ tridentctl import volume ontap-ai-flexgroups-iface2 pb_fg_all -f ./pvc-import-pb_fg_all-

iface2.yaml -n trident 

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+ 

|          NAME                  |  SIZE  |       STORAGE CLASS               | PROTOCOL |             

BACKEND UUID                         | STATE  | MANAGED | 

+--------------------------------+--------+-----------------------------------+----------+-------

-----------------------------------+--------+---------+ 

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-iface2 | file     | 

61814d48-c770-436b-9cb4-cf7ee661274d | online | true    | 

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+ 

$ tridentctl get volume -n trident 

+----------------------------------+---------+-----------------------------------+----------+----

----------------------------------+--------+---------+ 

|               NAME               |  SIZE   |           STORAGE CLASS           | PROTOCOL |             

BACKEND UUID             | STATE  | MANAGED | 

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
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+----------------------------------+---------+-----------------------------------+----------+----

----------------------------------+--------+---------+ 

| default-pb-fg-all-iface1-7d9f1   | 10 TiB  | ontap-ai-flexgroups-retain-iface1 | file     | 

b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true    | 

| default-pb-fg-all-iface2-85aee   | 10 TiB  | ontap-ai-flexgroups-retain-iface2 | file     | 

61814d48-c770-436b-9cb4-cf7ee661274d | online | true    | 

+----------------------------------+---------+-----------------------------------+----------+----

----------------------------------+--------+---------+ 

$ kubectl get pvc 

NAME                 STATUS   VOLUME                             CAPACITY         ACCESS MODES   

STORAGECLASS                        AGE 

pb-fg-all-iface1     Bound    default-pb-fg-all-iface1-7d9f1     10995116277760   ROX            

ontap-ai-flexgroups-retain-iface1   25h 

pb-fg-all-iface2     Bound    default-pb-fg-all-iface2-85aee     10995116277760   ROX            

ontap-ai-flexgroups-retain-iface2   25h 

Provision a New Volume 

You can use Trident to provision a new volume on your NetApp storage system or platform. The following 

example commands show the provisioning of a new FlexVol volume. In this example, the volume is 

provisioned using the StorageClass that was created in the example in the section “Example Kubernetes 

StorageClasses for ONTAP AI Deployments,” step 2. 

Note: An accessModes value of ReadWriteMany is specified in the following example PVC definition 
file. This value means that multiple containers can mount this PVC at the same time and that 
access is read-write. For more information about the accessMode field, see the official 
Kubernetes documentation. 

$ cat << EOF > ./pvc-tensorflow-results.yaml 

kind: PersistentVolumeClaim 

apiVersion: v1 

metadata: 

  name: tensorflow-results 

spec: 

  accessModes: 

    - ReadWriteMany 

  resources: 

    requests: 

      storage: 1Gi 

  storageClassName: ontap-ai-flexvols-retain 

EOF 

$ kubectl create -f ./pvc-tensorflow-results.yaml 

persistentvolumeclaim/tensorflow-results created 

$ kubectl get pvc 

NAME                              STATUS    VOLUME                             CAPACITY         

ACCESS MODES   STORAGECLASS                        AGE 

pb-fg-all-iface1                  Bound     default-pb-fg-all-iface1-7d9f1     10995116277760   

ROX            ontap-ai-flexgroups-retain-iface1   26h 

pb-fg-all-iface2                  Bound     default-pb-fg-all-iface2-85aee     10995116277760   

ROX            ontap-ai-flexgroups-retain-iface2   26h 

tensorflow-results                Bound     default-tensorflow-results-2fd60   1073741824       

RWX            ontap-ai-flexvols-retain            25h 

Example High-performance Jobs for ONTAP AI Deployments 

This section includes examples of various high-performance jobs that can be executed when the NetApp 

AI Control Plane solution is deployed on an ONTAP AI pod. 

Execute a Single-Node AI Workload 

To execute a single-node AI and ML job in your Kubernetes cluster, perform the following tasks from the 

deployment jump host. With Trident, you can quickly and easily make a data volume, potentially 

containing petabytes of data, accessible to a Kubernetes workload. To make such a data volume 

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
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accessible from within a Kubernetes pod, simply specify a PVC, such as one of the PVCs that was 

created in the example in the section “Import an Existing Volume,” in the pod definition. This step is a 

Kubernetes-native operation; no NetApp expertise is required. 

Note: This section assumes that you have already containerized (in the Docker container format) the 
specific AI and ML workload that you are attempting to execute in your Kubernetes cluster. 

1. The following example commands show the creation of a Kubernetes job for a TensorFlow 
benchmark workload that uses the ImageNet dataset. For more information about the ImageNet 
dataset, see the ImageNet website.  

This example job requests eight GPUs and therefore can run on a single GPU worker node that 
features eight or more GPUs. This example job could be submitted in a cluster for which a worker 
node featuring eight or more GPUs is not present or is currently occupied with another workload. If 
so, then the job remains in a pending state until such a worker node becomes available. 

Additionally, to provide the required amount of storage bandwidth, the volume that contains the 
needed training data (the volume that was imported in the example in the section “Import an Existing 
Volume”) is mounted twice within the pod that this job creates. See the highlighted lines in the 
following job definition. See the section “Example Trident Backends for ONTAP AI Deployments”, 
step 1, for details about why you might want to mount the same data volume multiple times. The 
number of mounts that you need depends on the amount of bandwidth that the specific job requires. 

The volume that was created in the example in the section “Provision a New Volume” is also mounted 
in the pod. These volumes are referenced in the job definition by using the names of the PVCs. For 
more information about Kubernetes jobs, see the official Kubernetes documentation. 

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this 

example job creates. The default size of the /dev/shm virtual volume that is automatically created by 

the Docker container runtime can sometimes be insufficient for TensorFlow’s needs. Mounting an 
emptyDir volume as in the following example provides a sufficiently large /dev/shm virtual volume. 

For more information about emptyDir volumes, see the official Kubernetes documentation. 

The single container that is specified in this example job definition is given a securityContext > 

privileged value of true. This value means that the container effectively has root access on the 

host. This annotation is used in this case because the specific workload that is being executed 
requires root access. Specifically, a clear cache operation that the workload performs requires root 
access. Whether or not this privileged: true annotation is necessary depends on the 

requirements of the specific workload that you are executing. 

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml 

apiVersion: batch/v1 

kind: Job 

metadata: 

  name: netapp-tensorflow-single-imagenet 

spec: 

  backoffLimit: 5 

  template: 

    spec: 

      volumes: 

      - name: dshm 

        emptyDir: 

          medium: Memory 

      - name: testdata-iface1 

        persistentVolumeClaim: 

          claimName: pb-fg-all-iface1 

      - name: testdata-iface2 

        persistentVolumeClaim: 

          claimName: pb-fg-all-iface2 

      - name: results 

        persistentVolumeClaim: 

          claimName: tensorflow-results 

      containers: 

      - name: netapp-tensorflow-py2 

        image: netapp/tensorflow-py2:19.03.0 

http://www.image-net.org/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
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        command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--dgx_version=dgx1", "--num_devices=8"] 

        resources: 

          limits: 

            nvidia.com/gpu: 8 

        volumeMounts: 

        - mountPath: /dev/shm 

          name: dshm 

        - mountPath: /mnt/mount_0 

          name: testdata-iface1 

        - mountPath: /mnt/mount_1 

          name: testdata-iface2 

        - mountPath: /tmp 

          name: results 

        securityContext: 

          privileged: true 

      restartPolicy: Never 

EOF 

$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml 

job.batch/netapp-tensorflow-single-imagenet created 

$ kubectl get jobs 

NAME                                       COMPLETIONS   DURATION   AGE 

netapp-tensorflow-single-imagenet          0/1           24s        24s 

2. Confirm that the job that you created in step 1 is running correctly. The following example command 
confirms that a single pod was created for the job, as specified in the job definition, and that this pod 
is currently running on one of the GPU worker nodes. 

$ kubectl get pods -o wide 

NAME                                             READY   STATUS      RESTARTS   AGE     

IP              NODE            NOMINATED NODE 

netapp-tensorflow-single-imagenet-m7x92          1/1     Running     0          3m    

10.233.68.61    10.61.218.154   <none> 

3. Confirm that the job that you created in step 1 completes successfully. The following example 
commands confirm that the job completed successfully. 

$ kubectl get jobs 

NAME                                             COMPLETIONS   DURATION   AGE 

netapp-tensorflow-single-imagenet                1/1           5m42s      10m 

$ kubectl get pods 

NAME                                                   READY   STATUS      RESTARTS   AGE 

netapp-tensorflow-single-imagenet-m7x92                0/1     Completed   0          11m 

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92 

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c 

at line 702 

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c 

at line 711 

Total images/sec = 6530.59125 

================ Clean Cache !!! ================== 

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 > /proc/sys/vm/drop_caches' 

========================================= 

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x 

LD_LIBRARY_PATH -x PATH python 

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --

model=resnet50 --batch_size=256 --device=gpu --force_gpu_compatible=True --num_intra_threads=1 --

num_inter_threads=48 --variable_update=horovod --batch_group_size=20 --num_batches=500 --

nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True --use_tf_layers=False --

data_name=imagenet --use_datasets=True --data_dir=/mnt/mount_0/dataset/imagenet --

datasets_parallel_interleave_cycle_length=10 --datasets_sloppy_parallel_interleave=False --

num_mounts=2 --mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4 --horovod_device=gpu > 

/tmp/20190814_105450_tensorflow_horovod_rdma_resnet50_gpu_8_256_b500_imagenet_nodistort_fp16_r10_

m2_nockpt.txt 2>&1 

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job 
object that was created in step 1. 

 When you delete the job object, Kubernetes automatically deletes any associated pods. 
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$ kubectl get jobs 

NAME                                             COMPLETIONS   DURATION   AGE 

netapp-tensorflow-single-imagenet                1/1           5m42s      10m 

$ kubectl get pods 

NAME                                                   READY   STATUS      RESTARTS   AGE 

netapp-tensorflow-single-imagenet-m7x92                0/1     Completed   0          11m 

$ kubectl delete job netapp-tensorflow-single-imagenet 

job.batch "netapp-tensorflow-single-imagenet" deleted 

$ kubectl get jobs 

No resources found. 

$ kubectl get pods 

No resources found. 

Execute a Synchronous Distributed AI Workload 

To execute a synchronous multinode AI and ML job in your Kubernetes cluster, perform the following 

tasks on the deployment jump host. This process enables you to take advantage of data that is stored on 

a NetApp volume and to use more GPUs than a single worker node can provide. See Figure 9 for a 

visualization. 

Note: Synchronous distributed jobs can help increase performance and training accuracy compared 
with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs versus 
asynchronous jobs is outside the scope of this document. 

Figure 9) Synchronous distributed AI job. 

 

1. The following example commands show the creation of one worker that participates in the 
synchronous distributed execution of the same TensorFlow benchmark job that was executed on a 
single node in the example in the section “Execute a Single-Node AI Workload.” In this specific 
example, only a single worker is deployed because the job is executed across two worker nodes.  

This example worker deployment requests eight GPUs and thus can run on a single GPU worker 
node that features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to 
maximize performance, you might want to increase this number to be equal to the number of GPUs 
that your worker nodes feature. For more information about Kubernetes deployments, see the official 
Kubernetes documentation. 

A Kubernetes deployment is created in this example because this specific containerized worker would 
never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job 
construct. If your worker is designed or written to complete on its own, then it might make sense to 
use the job construct to deploy your worker. 

The pod that is specified in this example deployment specification is given a hostNetwork value of 

true. This value means that the pod uses the host worker node’s networking stack instead of the 

virtual networking stack that Kubernetes usually creates for each pod. This annotation is used in this 
case because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload 
in a synchronous distributed manner. Therefore, it requires access to the host networking stack. A 
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discussion about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or 
not this hostNetwork: true annotation is necessary depends on the requirements of the specific 

workload that you are executing. For more information about the hostNetwork field, see the official 

Kubernetes documentation. 

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml 

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: netapp-tensorflow-multi-imagenet-worker 

spec: 

  replicas: 1 

  selector: 

    matchLabels: 

      app: netapp-tensorflow-multi-imagenet-worker 

  template: 

    metadata: 

      labels: 

        app: netapp-tensorflow-multi-imagenet-worker 

    spec: 

      hostNetwork: true 

      volumes: 

      - name: dshm 

        emptyDir: 

          medium: Memory 

      - name: testdata-iface1 

        persistentVolumeClaim: 

          claimName: pb-fg-all-iface1 

      - name: testdata-iface2 

        persistentVolumeClaim: 

          claimName: pb-fg-all-iface2 

      - name: results 

        persistentVolumeClaim: 

          claimName: tensorflow-results 

      containers: 

      - name: netapp-tensorflow-py2 

        image: netapp/tensorflow-py2:19.03.0 

        command: ["bash", "/netapp/scripts/start-slave-multi.sh", "22122"] 

        resources: 

          limits: 

            nvidia.com/gpu: 8 

        volumeMounts: 

        - mountPath: /dev/shm 

          name: dshm 

        - mountPath: /mnt/mount_0 

          name: testdata-iface1 

        - mountPath: /mnt/mount_1 

          name: testdata-iface2 

        - mountPath: /tmp 

          name: results 

        securityContext: 

          privileged: true 

EOF 

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml 

deployment.apps/netapp-tensorflow-multi-imagenet-worker created 

$ kubectl get deployments 

NAME                                      DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE 

netapp-tensorflow-multi-imagenet-worker   1         1         1            1           4s 

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following 
example commands confirm that a single worker pod was created for the deployment, as indicated in 
the deployment definition, and that this pod is currently running on one of the GPU worker nodes. 

$ kubectl get pods -o wide 

NAME                                                       READY   STATUS    RESTARTS   AGE    

IP              NODE            NOMINATED NODE 

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1     Running   0          60s   

10.61.218.154   10.61.218.154   <none> 

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces
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22122 

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the 
synchronous multinode job. The following example commands create one master that kicks off, 
participates in, and tracks the synchronous distributed execution of the same TensorFlow benchmark 
job that was executed on a single node in the example in the section “Execute a Single-Node AI 
Workload.” 

This example master job requests eight GPUs and thus can run on a single GPU worker node that 
features eight or more GPUs. If your GPU worker nodes feature more than eight GPUs, to maximize 
performance, you might want to increase this number to be equal to the number of GPUs that your 
worker nodes feature. 

 The master pod that is specified in this example job definition is given a hostNetwork value 
of true, just as the worker pod was given a hostNetwork value of true in step 1. See step 
1 for details about why this value is necessary. 

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml 

apiVersion: batch/v1 

kind: Job 

metadata: 

  name: netapp-tensorflow-multi-imagenet-master 

spec: 

  backoffLimit: 5 

  template: 

    spec: 

      hostNetwork: true 

      volumes: 

      - name: dshm 

        emptyDir: 

          medium: Memory 

      - name: testdata-iface1 

        persistentVolumeClaim: 

          claimName: pb-fg-all-iface1 

      - name: testdata-iface2 

        persistentVolumeClaim: 

          claimName: pb-fg-all-iface2 

      - name: results 

        persistentVolumeClaim: 

          claimName: tensorflow-results 

      containers: 

      - name: netapp-tensorflow-py2 

        image: netapp/tensorflow-py2:19.03.0 

        command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--port=22122", "--num_devices=16", "--

dgx_version=dgx1", "--nodes=10.61.218.152,10.61.218.154"] 

        resources: 

          limits: 

            nvidia.com/gpu: 8 

        volumeMounts: 

        - mountPath: /dev/shm 

          name: dshm 

        - mountPath: /mnt/mount_0 

          name: testdata-iface1 

        - mountPath: /mnt/mount_1 

          name: testdata-iface2 

        - mountPath: /tmp 

          name: results 

        securityContext: 

          privileged: true 

      restartPolicy: Never 

EOF 

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml 

job.batch/netapp-tensorflow-multi-imagenet-master created 

$ kubectl get jobs 

NAME                                      COMPLETIONS   DURATION   AGE 

netapp-tensorflow-multi-imagenet-master   0/1           25s        25s 
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4. Confirm that the master job that you created in step 3 is running correctly. The following example 
command confirms that a single master pod was created for the job, as indicated in the job definition, 
and that this pod is currently running on one of the GPU worker nodes. You should also see that the 
worker pod that you originally saw in step 1 is still running and that the master and worker pods are 
running on different nodes. 

$ kubectl get pods -o wide 

NAME                                                       READY   STATUS    RESTARTS   AGE    

IP              NODE            NOMINATED NODE 

netapp-tensorflow-multi-imagenet-master-ppwwj              1/1     Running   0          45s   

10.61.218.152   10.61.218.152   <none> 

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1     Running   0          26m   

10.61.218.154   10.61.218.154   <none> 

5. Confirm that the master job that you created in step 3 completes successfully. The following example 
commands confirm that the job completed successfully. 

$ kubectl get jobs 

NAME                                      COMPLETIONS   DURATION   AGE 

netapp-tensorflow-multi-imagenet-master   1/1           5m50s      9m18s 

$ kubectl get pods 

NAME                                                       READY   STATUS      RESTARTS   AGE 

netapp-tensorflow-multi-imagenet-master-ppwwj              0/1     Completed   0          9m38s 

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1     Running     0          35m 

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppwwj 

[10.61.218.152:00008] WARNING: local probe returned unhandled shell:unknown assuming bash 

rm: cannot remove '/lib': Is a directory 

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 702 

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 711 

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 702 

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 711 

Total images/sec = 12881.33875 

================ Clean Cache !!! ================== 

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca pml ob1 -mca btl ^openib 

-mca btl_tcp_if_include enp1s0f0 -mca plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" bash -c 

'sync; echo 1 > /proc/sys/vm/drop_caches' 

========================================= 

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8 -bind-to none -map-by slot -x 

NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH -mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include 

enp1s0f0 -x NCCL_IB_HCA=mlx5 -x NCCL_NET_GDR_READ=1 -x NCCL_IB_SL=3 -x NCCL_IB_GID_INDEX=3 -x 

NCCL_SOCKET_IFNAME=enp5s0.3091,enp12s0.3092,enp132s0.3093,enp139s0.3094 -x NCCL_IB_CUDA_SUPPORT=1 

-mca orte_base_help_aggregate 0 -mca plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" python 

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --

model=resnet50 --batch_size=256 --device=gpu --force_gpu_compatible=True --num_intra_threads=1 --

num_inter_threads=48 --variable_update=horovod --batch_group_size=20 --num_batches=500 --

nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True --use_tf_layers=False --

data_name=imagenet --use_datasets=True --data_dir=/mnt/mount_0/dataset/imagenet --

datasets_parallel_interleave_cycle_length=10 --datasets_sloppy_parallel_interleave=False --

num_mounts=2 --mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4 --horovod_device=gpu > 

/tmp/20190814_161609_tensorflow_horovod_rdma_resnet50_gpu_16_256_b500_imagenet_nodistort_fp16_r10

_m2_nockpt.txt 2>&1 

6. Delete the worker deployment when you no longer need it. The following example commands show 
the deletion of the worker deployment object that was created in step 1. 

 When you delete the worker deployment object, Kubernetes automatically deletes any 
associated worker pods. 

$ kubectl get deployments 

NAME                                      DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE 

netapp-tensorflow-multi-imagenet-worker   1         1         1            1           43m 

$ kubectl get pods 

NAME                                                       READY   STATUS      RESTARTS   AGE 

netapp-tensorflow-multi-imagenet-master-ppwwj              0/1     Completed   0          17m 

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725   1/1     Running     0          43m 

$ kubectl delete deployment netapp-tensorflow-multi-imagenet-worker 

deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted 

$ kubectl get deployments 
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No resources found. 

$ kubectl get pods 

NAME                                            READY   STATUS      RESTARTS   AGE 

netapp-tensorflow-multi-imagenet-master-ppwwj   0/1     Completed   0          18m 

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of 
the master job object that was created in step 3. 

 When you delete the master job object, Kubernetes automatically deletes any associated 
master pods. 

$ kubectl get jobs 

NAME                                      COMPLETIONS   DURATION   AGE 

netapp-tensorflow-multi-imagenet-master   1/1           5m50s      19m 

$ kubectl get pods 

NAME                                            READY   STATUS      RESTARTS   AGE 

netapp-tensorflow-multi-imagenet-master-ppwwj   0/1     Completed   0          19m 

$ kubectl delete job netapp-tensorflow-multi-imagenet-master 

job.batch "netapp-tensorflow-multi-imagenet-master" deleted 

$ kubectl get jobs 

No resources found. 

$ kubectl get pods 

No resources found. 

Performance Testing 

We performed a simple performance comparison as part of the creation of this solution. We executed 

several standard NetApp benchmarking jobs by using Kubernetes, and we compared the benchmark 

results with executions that were performed by using a simple Docker run command. We did not see any 

noticeable differences in performance. Therefore, we concluded that the use of Kubernetes to orchestrate 

containerized jobs does not adversely affect performance. Table 3 lists the results of our performance 

comparison. 

Table 3) Performance comparison results. 

Benchmark Dataset Docker Run 
(images/sec) 

Kubernetes 
(images/sec) 

Single-node TensorFlow Synthetic data 6,667.2475 6,661.93125 

Single-node TensorFlow ImageNet 6,570.2025 6,530.59125 

Synchronous distributed two-node TensorFlow Synthetic data 13,213.70625 13,218.288125 

Synchronous distributed two-node TensorFlow ImageNet 12,941.69125 12,881.33875 

Conclusion 

Companies and organizations of all sizes and across all industries are turning to artificial intelligence (AI), 

machine learning (ML), and deep learning (DL) to solve real-world problems, deliver innovative products 

and services, and to get an edge in an increasingly competitive marketplace. As organizations increase 

their use of AI, ML, and DL, they face many challenges, including workload scalability and data 

availability. These challenges can be addressed through the use of the NetApp AI Control Plane, 

NetApp’s full stack AI data and experiment management solution. 

This solution enables you to rapidly clone a data namespace just as you would a Git repo. Additionally, it 

allows you to define and implement AI, ML, and DL training workflows that incorporate the near-instant 

creation of data and model baselines for traceability and versioning. With this solution, you can trace 

every single model training run back to the exact dataset(s) that the model was trained and/or validated 

with. Lastly, this solution enables you to swiftly provision Jupyter Notebook workspaces with access to 

massive datasets.  
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Because this solution is targeted towards data scientists and data engineers, no NetApp or NetApp 

ONTAP expertise is required. With this solution, data management functions can be executed using 

simple and familiar tools and interfaces. Furthermore, this solution utilizes fully open-source and free 

components. Therefore, if you already have NetApp storage in your environment, you can implement this 

solution today. If you want to test drive this solution but you do not have already have NetApp storage, 

visit cloud.netapp.com, and you can be up and running with a cloud-based NetApp storage solution in no 

time. 
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Where to Find Additional Information 

To learn more about the information that is described in this document, see the following resources: 

• NVIDIA DGX-1 servers: 

− NVIDIA DGX-1 servers 
https://www.nvidia.com/en-us/data-center/dgx-1/ 

− NVIDIA Tesla V100 Tensor Core GPU 
https://www.nvidia.com/en-us/data-center/tesla-v100/ 

− NVIDIA GPU Cloud (NGC) 
https://www.nvidia.com/en-us/gpu-cloud/ 

• NetApp AFF systems: 

− AFF datasheet 
https://www.netapp.com/us/media/ds-3582.pdf 

− NetApp FlashAdvantage for AFF 
https://www.netapp.com/us/media/ds-3733.pdf 

− ONTAP 9.x documentation 
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286 

− NetApp FlexGroup technical report 
https://www.netapp.com/us/media/tr-4557.pdf 

• NetApp persistent storage for containers: 

− NetApp Trident 
https://netapp.io/persistent-storage-provisioner-for-kubernetes/ 

• NetApp Interoperability Matrix: 

− NetApp Interoperability Matrix Tool 
http://support.netapp.com/matrix 

• ONTAP AI networking: 

− Cisco Nexus 3232C Switches 
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html 

http://cloud.netapp.com/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
http://support.netapp.com/matrix
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
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− Mellanox Spectrum 2000 series switches 
http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000 

• ML framework and tools: 

− DALI 
https://github.com/NVIDIA/DALI  

− TensorFlow: An Open-Source Machine Learning Framework for Everyone 
https://www.tensorflow.org/ 

− Horovod: Uber’s Open-Source Distributed Deep Learning Framework for TensorFlow 
https://eng.uber.com/horovod/ 

− Enabling GPUs in the Container Runtime Ecosystem 
https://devblogs.nvidia.com/gpu-containers-runtime/ 

− Docker 
https://docs.docker.com 

− Kubernetes 
https://kubernetes.io/docs/home/ 

− NVIDIA DeepOps 
https://github.com/NVIDIA/deepops 

− Kubeflow 
http://www.kubeflow.org/ 

− Jupyter Notebook Server 
http://www.jupyter.org/ 

• Dataset and benchmarks: 

− ImageNet 
http://www.image-net.org/ 

− COCO 
http://cocodataset.org/ 

− Cityscapes 
https://www.cityscapes-dataset.com/  

− nuScenes 
www.nuscenes.org 

− SECOND: Sparsely Embedded Convolutional Detection model 
https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf 

− TensorFlow benchmarks 
https://github.com/tensorflow/benchmarks  

Version History 

Version Date Document Version History 

Version 1.0 September 2019 Initial release. 

Version 2.0 September 2019 Added sections on triggering Snapshot copies/FlexClone 
volumes using kubectl commands (removed from document in 
version 3.0); added section on Kubeflow (“NVIDIA DeepOps” 
and “Kubeflow.”*); added Figure 9; and updated DeepOps 
troubleshooting instructions. 

Version 3.0 March 2020 Added section on creating a Snapshot from within a Jupyter 
Notebook (“Create a Snapshot of an ONTAP Volume from 
Within a Jupyter Notebook”); added example Kubeflow 
pipelines (“Create a Kubeflow Pipeline to Execute an End-to-
End AI Training Workflow with Built-in Traceability and 
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Version Date Document Version History 

Versioning” and “Create a Kubeflow Pipeline to Rapidly Clone a 
Dataset for a Data Scientist Workspace”); added NetApp 
Snapshot copies and NetApp FlexClone technology 
descriptions to the “Concepts and Components” section; and 
reordered sections within document; and removed sections on 
triggering Snapshot copies/FlexClone volumes using kubectl 
commands (due to Kubernetes API changes). 

Version 4.0 May 2020 Added example Kubeflow pipeline (“Create a Kubeflow Pipeline 
to Trigger a SnapMirror Volume Replication Update”); added 
NetApp SnapMirror technology description (“NetApp SnapMirror 
Data Replication Technology”); and updated Abstract and 
Introduction. 

Version 5.0 June 2020 Added example Jupyter Notebook (“Trigger a Cloud Sync 
Replication Update from Within a Jupyter Notebook”); added 
example Kubeflow pipeline (“Create a Kubeflow Pipeline to 
Trigger a Cloud Sync Replication Update”); updated example 
Kubeflow pipeline to use Trident-based annotation cloning 
method (“Create a Kubeflow Pipeline to Rapidly Clone a 
Dataset for a Data Scientist Workspace”); added NetApp Cloud 
Sync technology description (“NetApp Cloud Sync”); added 
DeepOps option for deploying Trident (“Install Trident”); fixed 
formatting error in the section “Create a Kubeflow Pipeline to 
Trigger a SnapMirror Volume Replication Update;” and removed 
all references to NKS. 

Version 6.0 October 2020 Added Apache Airflow sections (sections “Apache Airflow,” 
“Apache Airflow Deployment,” and “Example Apache Airflow 
Workflows”); added references to Git repo containing example 
Kubeflow pipelines and Jupyter Notebooks (“Example Kubeflow 
Operations and Tasks”); added NetApp XCP to “Concepts and 
Components;” reworded introduction. 
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Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact 
product and feature versions described in this document are supported for your specific environment. The 
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