
WHITE PAPER

Persistent Storage
for Containers
Made Easy
Speeding application development
while increasing DevOps efficiency

http://www.netapp.com

The Challenge: Building DevOps Maturity	 3

The Big Container Hurdle: Managing Persistent 	 3
Storage for Stateful Applications

A Short Overview of Containers, Data Persistence,	 4
 and Stateless vs. Stateful Apps

A Good Start: Basic Provisioning of Persistent 	 4
Storage for Containers

The Verdict: Some Progress, But Still Too Much Waiting	 4

Storage Classes, Storage Pools, and Trident:	 5
Persistent Storage on Demand

Could a Storage-Class Catalog Be That Easy?	 5

The Future of DevOps	 6

Transforming How You Work	 6

Helping You, Helping Your Business	 7

Additional Resources	 7

3

The Challenge: Building DevOps Maturity
Continued innovation. Better, faster product rollouts. More
streamlined operations. A growing pool of happy customers.

These are universal goals for many organizations. They are
also milestones along the drive toward better business
outcomes: greater top-line revenue growth and improved
bottom-line profitability.

On the flip side of such drives toward achievement are often the
growing pains and frustrations of an organization in the midst
of transformation. Application developers—eager to accelerate
development efforts that solve customer needs—might find
themselves frustrated with ticketing systems and long waits for
storage and compute resources. Infrastructure and operations
(I&O) teams, in contrast, struggle to keep up with incoming
service tickets and with controlling the way infrastructure is
being utilized.

This mixture of goals and growth pains is propelling
organizations to pursue agile and lean methodologies to drive
greater speed and efficiency in their product development.
And while agile and lean methodologies have delivered
significant benefits, far greater benefits could be realized if the
IT infrastructure and processes were aligned to support the
efficiency and speed organizations desire.

This is where DevOps comes in. DevOps is an approach
designed to more rapidly achieve transformation in both
application development and IT infrastructure operations.

Organizations that succeed in achieving DevOps maturity
are often characterized by their degree of mastery of six
key capabilities:

•	 Code, artifact, and binary management. Repositories for
retaining and managing software components

•	 Configuration management. Configuring and maintaining
infrastructure and software systems in known ways

•	 �Cloud/PaaS. Use of public, private, and hybrid cloud
infrastructure to support software development

•	 �Containers. Lightweight but highly scalable application
runtime environments

•	 �Analytics. Automated monitoring and management
of infrastructure

•	 �Continuous integration/continuous deployment (CI/CD).
End-to-end automated processes that enable developers to
write and automatically deploy code

One of these six areas in particular—containers—has taken
on increasing significance for application development and
infrastructure operations teams that seek additional speed
and efficiency. This white paper addresses this move toward
DevOps maturity with containers while highlighting one of
the key issues that must be considered: managing persistent
storage for stateful applications.

The Big Container Hurdle: Managing Persistent Storage for
Stateful Applications
As DevOps teams begin to consider more real-world production
deployments of containerized applications, challenges have
emerged. Not the least of which is the management of
persistent data storage for containers.

Do you need a better understanding of concepts such as
data persistence with containers or stateful vs. stateless
applications? See the brief inset on page 4.

Early in the application container movement, it became clear
that the handling of data storage was a challenge. In a survey
by the Cloud Native Computing Foundation (CNCF), nearly half
the respondents (42%) said storage and resource management
was a key container adoption challenge (Figure 1).1 Many of
these cited ongoing issues with storage persistence. Others
wanted easier access to network storage.

Figure 1) Challenges to container adoption (multiple responses
were allowed).
Source: Cloud Native Computing Foundation.

10% 20% 30% 40% 50% 60%

Networking
50%

17%
9%

Complexity
39%

10%

7%

Mar ‘16 Jun ‘16 Nov ‘16

Storage &
Resource

Management 42%

33%

24%

Tooling &
Automation

21%

16%

Logging &
Monitoring

37%

10%

13%

Culture
14%

7%

Reliability &
Maturity

21%

9%

3%

Security
42%

11%

3%

Vendor
Selection/

Support 37%

7%

4%

https://www.cncf.io/blog/2017/04/27/meeting-challenges-using-deploying-containers/

4

As a result, container platforms began to tackle the persistent
storage challenge. Early persistent storage provisioning efforts
made a good start, but remained somewhat inflexible and overly
manual. Accelerating the DevOps pipeline also did not seem
possible, especially when applications needed to be coded,
tested, and deployed into hundreds or thousands of containers.

From a scalability perspective, having to manually provision
storage for thousands of containers began to look
insupportable: too cumbersome, too error-prone, and too hard
to maintain. There had to be a better way.

Before containers, many enterprise applications successfully met
their persistent data storage needs through a central connection
to shared enterprise storage. In a container world, couldn’t such
stateful applications operate just as well if they had easy access
to similar shared storage features? But this question remained:
How easy would it be to get there?

A Good Start: Basic Provisioning of Persistent Storage
for Containers
Container environments such as Docker and Kubernetes
originally responded to the storage persistence challenge
with a useful, semiautomated mechanism. This mechanism
allowed users to create and “claim” a particular persistent
storage volume for use by one or more container processes.
This required a storage administrator to first create persistent
volumes from various underlying network storage resources.

A Short Overview of Containers, Data Persistence, and
Stateless vs. Stateful Apps
By their nature, containers are stateless. Their contents are
ephemeral. This means a container’s related applications or
processes can be started, stopped, and restarted quickly during
a given session. By default, this meant that data created while
a container was active would be destroyed as soon as the
container was terminated or destroyed.

Unfortunately, as DevOps teams looked to develop and deploy
more applications into production on container platforms, a
variety of needs emerged to retain or persist data past the life
of any single container.

Many soon found that nearly every application had at least one
process or microservice requiring a persistent volume (PV) for
state data needing to persist past the life of a given container.

Here are a few examples of stateful applications requiring data
persistence:

•	 Database environments. A database container needs to
persist storage for its datastore. Given the ephemeral nature
of containers, however, that’s not feasible without help. Local
storage was not a good option, either. If the container moved
or was destroyed, it would lose access to that data.	

•	 Environmental or session data. Stateful applications also
often collect and save application environmental attributes
or client session data (state). This acts as historical data to
enhance the client experience. In this case, the next time the
client interacts with the application, it can present relevant
data or better manipulate data created in a previous session.

Just as important as the need to preserve state data was the
need to share data. Organizations building or migrating to
containerized applications soon found the need for everyone—
from development to testing and operations—to access the
same datasets from the same centralized network storage
resources. Persistent volumes stored on network storage
could also ensure that containerized applications were more
protected by enterprise-grade storage features, driving greater
application availability, reliability, security, and data protection.

Kubernetes: Basic Provisioning in Action
For Kubernetes, the process adopted code-based mechanisms
associated with a PersistentVolume (PV) and a matching
PersistentVolumeClaim (PVC).

A static, persistent volume (for instance, a volume with 8GB of
all-flash storage capacity) would have to first be created by an
administrator. Then the application user (or developer) could
subsequently request or claim that specific persistent volume
with a few lines of code.

This claiming and binding of PVs to PVCs was intriguing for
container environments because it enabled containerized
applications to start consuming persistent network storage
through code.

Although a good start to enabling the consumption of network
storage, a number of challenges with this basic provisioning
approach remained. The largest of the challenges is the need
for automation.

The Verdict: Some Progress, But Still Too Much Waiting
The use of preprovisioned PVs with their PVC pairings was
an excellent first step to solve containers’ persistent storage
issues. However, much of the storage provisioning process still
remained a largely manual, static, and repetitive effort on the
part of both the Dev and Ops sides of the house. This posed
several inefficiencies for application development and DevOps
teams looking to reduce handoffs and automate their efforts
toward CI/CD:

5

•	 Manual storage requests. Application developers or QA
personnel working on code or testing sprints might need to
stop what they were doing to ask the storage administrator
to create a PV. When scaling larger container applications,
this might involve hundreds or thousands of ongoing
storage requests.

•	 Frustrating wait times for storage. Development or QA
teams might then be left waiting for approval of their request
or for the administrator to schedule a time to manually create
one or more PVs.

•	 Inefficient use of storage. With preprovisioned
storage for PVs to support development and QA, the
storage administrator could easily provision too little
(underprovisioning) or too much (overprovisioning) storage
capacity (Figure 2). They might also reserve too few or too
many IOPS per volume:

–– The risk of underprovisioning. When too little storage
is provisioned ahead of time for PVs, it could cause a
bottleneck that limits developers requiring more capacity
than what is readily available.

–– The risk of overprovisioning. Overprovisioned storage
resources, now locked in one or more PVs, might later
go to waste once bound to a PVC with a much smaller
requirement for capacity or performance. (Remember
those overprovisioned, underutilized storage silos of old?)

•	 Ineffective use of administrator resources. For multiple
application development efforts, those involved in storage
or cluster administration might find themselves the new
bottleneck in one or more DevOps pipelines. If multiple new
volume requests came at the final hour, the admin might
still need to perform several manual steps in the setup and
creation of each static PV. This practice also didn’t aid
administrators charged with further automating the
infrastructure and monitoring its overall consumption.

If this sounds a lot like storage provisioning of the old days,
you’re not alone in thinking this way. In concluding his 2017
Tech Field Day talk, DevOps Through Desired State, NetApp
Technical Marketing Engineer Andrew Sullivan commiserated
with DevOps teams wanting to break free from this type of
legacy provisioning. “Storage is not a resource I should just
have to tolerate, sulking down to the storage team’s desk
and begging for more capacity,” he said. “I don’t want to
provision storage. I don’t want to consume storage in 2017
the same way that I did in 1989.” 2

Thankfully, NetApp—and others who support container
environments—knew there had to be a better way for DevOps
teams to consume storage on demand and provision it
dynamically exactly where and when it was needed.

Storage Classes, Storage Pools, and Trident: Persistent
Storage on Demand
What Andrew Sullivan alluded to in the last section was the
need for a better way to provision storage resources. This was
a way that reflects the early promise of containers: Features
dynamically created and deployed, on demand—with little to no
manual intervention.

For Kubernetes, this meant the introduction of dynamic storage
provisioning through another concept, StorageClass. It also
meant some great automation from storage provisioners such
as Trident for Kubernetes:

•	 On-demand persistent storage. The open-source Trident
project, developed by NetApp, is a dynamic storage
provisioner that gives containerized applications on-demand
access to the persistent volumes of NetApp® storage they
need, when they need them. No more waiting.

•	 Unlocking powerful underlying storage. Container
environments using Trident are able to unlock powerful
storage features from underlying NetApp data management
platforms (such as NetApp HCI, ONTAP®, NetApp SolidFire®
Element® OS, SANtricity®).

•	 Not just for Kubernetes. Similar functionality for persistent
volumes is also available through Trident for Docker
and OpenShift.

Could a Storage-Class Catalog Be That Easy?
Using Trident, developers in Kubernetes environments can now
dynamically provision persistent volumes just by requesting a
storage class from a virtual pool of underlying storage.

Let’s take a look at how this works. Using storage classes,
persistent volume provisioning occurs automatically on
demand, using code. The user just makes a persistent volume
claim and names a specific Trident storage class along with it
such as Gold, Silver, or Bronze.

Required
Storage

Required
Storage

Provisioned
Storage

Provisioned
Storage

Underprovisioning Overprovisioning

Storage
Shortfall

Excess
Storage

(Figure 2) The risk of underprovisioning or overprovisioning.

https://www.youtube.com/watch?v=btLZl7M6gnY&=&list=PLinuRwpnsHacYmunO7zyES6SyrsrFfu5O&=&index=4

6

Note: Configuration of underlying storage class attributes and
naming conventions is a back-end function typically performed
by an administrator when building an initial catalog of persistent
storage classes. One organization’s storage classes might just as
easily be called Dev, Staging, and Production. Another’s could
be called Fast or Slow. For further details about these types of
configuration functions, see Trident documentation.3

A persistent volume is then created from that storage class in
the underlying NetApp storage pool. It is then subsequently
bound to the user’s persistent volume claim (PVC). Users no
longer need to know about the underlying storage. Trident
handles those details. That’s it.

See Trident in Action
The best way to understand the value of Trident is to see its
dynamic provisioning at work. Take a few moments to watch
one of the following online demonstrations:

•	 Short demo (3:20 minutes): Using Trident for Dynamic
Storage Provisioning with OpenShift 4

•	 Longer demo (23:53 minutes): Managing Persistent Data
in Kubernetes 5

What does this type of provisioning functionality mean for
different members of IT and DevOps?

•	 For development or QA teams. No more waiting for service
tickets and storage request approvals. No more handoffs.
Consumption of storage with a promised SLA that’s just there
when and where you need it, dynamically provisioned using
familiar code interfaces. Developers now have a dynamic and
flexible automatic provisioning system that frees them while
still giving control to operations.

Transforming How You Work
Beyond its ability to dynamically provision persistent volumes,
tools such as Trident also allow DevOps teams to do so
much more.

This includes on-demand access, through code, to NetApp
storage efficiency features such as Snapshot™ copies and
cloning. Such features can be game changers for development
or QA teams who need to do more in less time with the least
amount of resources.

The Future of DevOps
DARZ, a full IT service provider, delivers DevOps agility
with its Docker & Container-as-a-Service offering. This
offering was based on NetApp all-flash storage and
Trident for Docker. Customers can rapidly spin up or spin
down application containers without the need for a full-
fledged operating system, cutting compute requirements
by as much as four times.

With a lean, flexible, containerized environment,
customers can shorten test cycles, accelerate
development, and deploy new products faster. By
simplifying the container-storage interaction through
the Docker volume set of commands, Trident makes
managing persistent data in a Docker environment easy.6

Persistent Volume Claim

DEV OPS
Persistent Volume Storage Classes

User IT Admin.

PVC1
10GB
RWO
Gold

PVC1
10GB
RWO
iSCSI
Gold

TRIDENT

GOLD
netapp.io/trident

SILVER
netapp.io/trident

Admin configures and adds storage
backends to Trident, and defines
storage classes.

Trident creates a physical volume
and automatically binds it to the
PVC request.

Trident receives PVC request and
finds storage pool for that class.

Developer creates a
persistent volume claim. 1

43

2

(Figure 3) Dynamically provision persistent volumes using Trident. •	 For IT or storage administrators. No more scrambling
for last-minute storage provisioning requests and endless
service tickets. Less storage administration. More automated
infrastructure scaling. More predictable control over storage
consumption and easier monitoring of resources.

•	 For IT executives. Faster product delivery, better processes,
and significant resource savings.

https://netapp-trident.readthedocs.io/en/stable-v18.04/
http://www.youtube.com/watch?v=97VZWYssL2E
http://www.youtube.com/watch?v=97VZWYssL2E
https://www.youtube.com/watch?v=XIuN91vG2wM
https://www.youtube.com/watch?v=XIuN91vG2wM
https://www.netapp.com/us/media/cs-darz-devops.pdf

7

community members. NetApp is a part of this community
and actively engaged in furthering its innovation. Toward that
goal, NetApp is working on many ways to allow community
members to more easily consume storage where and when
they need it. Today, NetApp is proud to support seamless
storage consumption across a variety of open ecosystems. We
continue to develop one of the industry’s most comprehensive
sets of APIs and integrations for environments such as Docker,
Kubernetes, OpenShift, OpenStack, Ansible, Chef, Puppet,
and more.

Trident is but one example of these efforts. We encourage you
to try Trident with your organization’s container environments
and look forward to hearing of the amazing efficiencies and
savings it brings to your own DevOps pipeline.

Additional Resources
To learn more about Trident and any other NetApp
DevOps integrations, we encourage you to check out the
following resources:

More About NetApp and Trident

NetApp solutions for containers

Trident feature overview:
Introducing Trident

Introduction to Kubernetes
persistent storage with Trident

Cloning: Introducing Volume Cloning
with Trident for Kubernetes

Trident documentation

Trident GitHub download

More About NetApp with DevOps

NetApp solutions for DevOps

thePub (netapp.io)

NetApp Slack channel
(netapp.io/slack)

@NetAppPub

The use of Snapshot copies and cloning through NetApp and
Trident allows:

•	 Rapid creation of real-time clones of full production
datasets. This means new developer or test workspaces can
be created dynamically in seconds with just a few lines of
code. See Figure 4.

•	 Quick and easy recovery of data. With Snapshot copies,
developers can quickly roll back datasets to a previous
version. This is handy for testing code; developers can quickly
iterate without fear of needing to recreate test datasets.

•	 Storage capacity savings from Snapshot copies or clones.
Organizations that make multiple clones of their production
data for development or testing often experience from 40%
to 90%7 storage capacity savings.

Learn more about how NetApp cloning and Snapshot work
with Trident:
•	 Self-service volume cloning with Kubernetes8

•	 Snapshot copies and self-service volume recovery
with Trident9

•	 This Tech ONTAP podcast describes how NetApp Oracle
expert Jeff Steiner cloned a large Oracle database in just 22
seconds using Docker with Trident10

Helping You, Helping Your Business
Solving problems for the needs of developers and engineers is
not new to NetApp. In fact, this is our heritage. As a company,
we learned early how storage infrastructure could be used
to enable and accelerate the important work of developers,
engineers, and the wider goals of their companies.
At NetApp, building better ways for organizations to manage
data and consume storage is what we do. We see open
ecosystems such as containers as a burgeoning, new area
for further innovation. This innovation is propelled by its

Cloning to rapidly support development and test workflows

Production
Data

Developer
Data

Test Data

(Figure 4) The power of NetApp cloning to accelerate
DevOps workflows.

https://www.netapp.com/us/solutions/it-automation/containers.aspx
https://netapp.io/2016/12/23/introducing-trident-dynamic-persistent-volume-provisioner-kubernetes/
https://youtu.be/NbhR81peqF8
https://youtu.be/NbhR81peqF8
https://netapp.io/2017/12/14/trident-18-01-beta-1-introducing-volume-cloning-kubernetes/
https://netapp.io/2017/12/14/trident-18-01-beta-1-introducing-volume-cloning-kubernetes/
http://netapp-trident.readthedocs.io/en/stable-v18.04/
https://github.com/netapp/trident
https://www.netapp.com/us/solutions/devops/index.aspx
https://netapp.io/
https://netapp.io/slack/
https://twitter.com/netapppub?lang=en
https://netapp.io/2017/12/14/trident-18-01-beta-1-introducing-volume-cloning-kubernetes/
https://netapp.io/2018/04/03/self-service-data-recovery-using-trident-nfs/
https://netapp.io/2018/04/03/self-service-data-recovery-using-trident-nfs/
https://soundcloud.com/techontap_podcast/episode-99-databases-as-a-service-containers
http://www.netapp.com

8

Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact product and feature versions described in this document are supported for your
specific environment. The NetApp IMT defines the product components and versions that can be used to construct configurations that are supported by NetApp. Specific results
depend on each customer’s installation in accordance with published specifications.

Copyright Information
Copyright © 2018 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means—graphic,
electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:
THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products
described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any
other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information
NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their
respective owners.

WP-7270-071

Endnotes
1 “Meeting Challenges in Using and Deploying Containers,” by Sarah Conway, April 27, 2017, Cloud Native Computing Foundation, https://www.cncf.io/blog/2017/04/27/meeting-
challenges-using-deploying-containers/. Reproduced with red circle added, under Creative Commons CC-BY 4.0 license.
2 “DevOps Through Desired State,” Presented by Andrew Sullivan, NetApp, Day 14, May 11, 2017, Tech Field Day, https://www.youtube.com/watch?v=btLZl7M6gnY&list=PLinuRwpnsHacY
munO7zyES6SyrsrFfu5O&index=4.
3 The latest Trident documentation can be found at https://netapp-trident.readthedocs.io/.
4 “Using Trident for Dynamic Storage Provisioning with OpenShift,” Online Demo, 3:20 min., by The Pub @ NetApp, Feb. 17, 2017, https://www.youtube.com/watch?v=97VZWYssL2E.
5 “Managing Persistent Data in Kubernetes,” Online Demo, 23:53 min., by The Pub @ NetApp, May 15, 2017, https://www.youtube.com/watch?v=XIuN91vG2wM.
6 “DARZ Docker & Container-as-a-Service Drives Digital Transformation Through DevOps,” Customer Success Story, NetApp, 2017, https://www.netapp.com/us/media/cs-darz-devops.pdf.
7 “How NetApp IT Shortened Development Cycles Using FlexClone,” NetApp Community Blog, by Gopal Parthasarathy, Oct. 8, 2015, https://community.netapp.com/t5/Technology/
How-NetApp-IT-Shortened-Development-Cycles-Using-FlexClone/ba-p/110581.
8 “Trident 18.01 beta 1: Introducing volume cloning to Kubernetes!” by Garrett Mueller, NetApp, Dec. 14, 2017, https://netapp.io/2017/12/14/trident-18-01-beta-1-introducing-volume-
cloning-kubernetes/. (See also: “Trident 18.01 is Here,” by Andrew Sullivan, NetApp, January 25, 2018, https://netapp.io/2018/01/25/trident-18-01/).
9 “Self-Service Data Recovery using Trident and NFS,” by Andrew Sullivan, April 3, 2018, NetApp,https://netapp.io/2018/04/03/self-service-data-recovery-using-trident-nfs/.
10 “Episode 99 - Databases as a Service: Containers,” Tech ONTAP Podcast, 2017, https://soundcloud.com/techontap_podcast/episode-99-databases-as-a-service-containers.

https://signin.netapp.com/oamext/login.html
https://www.netapp.com/tm/index.aspx
https://www.cncf.io/blog/2017/04/27/meeting-challenges-using-deploying-containers/
https://www.cncf.io/blog/2017/04/27/meeting-challenges-using-deploying-containers/
https://creativecommons.org/licenses/by/4.0/
http://www.netapp.com

