

Abstract

In today’s digital economy, artificial intelligence (AI) is becoming critical to business success.

As organizations increase their use of AI, they face two major challenges: data availability

and workload scalability. This document demonstrates how you can overcome these

challenges by using Kubeflow running on Kubernetes as a platform to execute AI workloads

and NetApp® Trident to provide seamless access to persistent data across nodes and

regions. We also walk through the setup of a Kubernetes and Trident environment for AI,

including the deployment of Kubeflow, and provide examples and demonstrations of

Kubernetes-based AI jobs.

Technical Report

AI at Scale with Trident, Kubernetes, and
Kubeflow
Execute AI Workloads at Scale with Trident, Kubernetes,
and Kubeflow

Mike Oglesby, NetApp

October 2019 | TR-4798

2 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

TABLE OF CONTENTS

1 Introduction ... 4

2 Concepts and Components ... 4

2.1 Artificial Intelligence .. 4

2.2 Containers ... 4

2.3 Kubernetes .. 5

2.4 NetApp Trident .. 5

2.5 NVIDIA DeepOps .. 5

2.6 Kubeflow ... 5

2.7 NetApp ONTAP 9 .. 6

2.8 NetApp ONTAP FlexGroup Volumes .. 7

3 Validation Environment ... 8

4 Kubernetes Environment Configuration and Example Operations ... 9

4.1 Prerequisites ... 9

4.2 Use NVIDIA DeepOps to Install and to Configure Kubernetes.. 9

4.3 Install and Configure Trident ... 10

4.4 Create Kubernetes StorageClasses .. 12

4.5 Import and Create Data Volumes .. 14

4.6 Execute a Single-Node AI Workload ... 15

4.7 Execute a Synchronous Distributed AI Workload .. 18

4.8 Enable Volume Snapshot Feature .. 22

4.9 Create a Volume Snapshot ... 26

4.10 Provision a new Volume from a Snapshot .. 27

5 Kubeflow Configuration and Example Operations ... 28

5.1 Prerequisites ... 28

5.2 Set Default Kubernetes StorageClass .. 28

5.3 Deploy Kubeflow ... 29

5.4 Provision a Jupyter Notebook Server .. 34

5.5 Create a Kubeflow Pipeline to Execute an AI Workload ... 43

6 Performance Testing .. 55

7 Conclusion .. 55

3 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

Acknowledgments .. 56

Where to Find Additional Information .. 56

Version History ... 57

LIST OF TABLES

Table 1) Infrastructure details. .. 8

Table 2) Software version details. .. 8

Table 3) Performance comparison results. ... 55

LIST OF FIGURES

Figure 1) VMs versus containers. ... 5

Figure 2) Kubeflow visualization ... 6

Figure 3) NetApp FlexGroup volumes. ... 8

Figure 4) Synchronous Distributed AI Job .. 18

4 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

1 Introduction

In today’s digital economy, artificial intelligence (AI) is becoming increasingly critical to business success.

Two of the major challenges that organizations face as they adopt AI are data availability and workload

scalability. This document describes how you can meet these challenges by using Kubeflow running on

Kubernetes and NetApp Trident. Furthermore, this report walks you through the setup of a Kubernetes

and Trident environment for AI, including the deployment of Kubeflow, and includes examples and

demonstrations of Kubernetes-based AI jobs. Kubeflow makes it simple to deploy and scale AI workloads

across multiple GPUs and nodes, and NetApp Trident provides seamless access to persistent data

across nodes and regions. With Trident, you can quickly and easily make data volumes, potentially

containing petabytes of data, available to Kubernetes-based workloads. Additionally, Trident is a

Kubernetes-native app. Trident allows users and administrators to provision and manage storage using

standard Kubernetes tools and APIs; no NetApp or NetApp ONTAP® expertise is required.

2 Concepts and Components

2.1 Artificial Intelligence

AI is a computer science discipline in which computers are trained to mimic the cognitive functions of the

human mind. AI aims to train computers to learn and to solve problems in a manner that is similar to, or

even superior to, humans. Deep learning (DL) and machine learning (ML) are subfields of AI.

Organizations are increasingly adopting AI, ML, and DL to support their critical business needs. Some

examples are as follows:

• Analyzing large amounts of data to unearth previously unknown business insights

• Interacting directly with customers by using natural language processing

• Automating various business processes and functions

Modern AI training and inference workloads require massively parallel computing capabilities. Therefore,

GPUs are increasingly being used to execute AI operations because the parallel processing capabilities

of GPUs are vastly superior to those of general-purpose CPUs.

2.2 Containers

Containers are isolated user-space instances that run on top of a shared host operating system kernel.

The adoption of containers is increasing rapidly. Containers offer many of the same application

sandboxing benefits that virtual machines (VMs) offer. However, because the hypervisor and guest

operating system layers that VMs rely on have been eliminated, containers are far more lightweight. See

Figure 1 for a visualization.

Containers also allow the efficient packaging of application dependencies, run times, and so on, directly

with an application. The most commonly used container packaging format is the Docker container. An

application that has been containerized in the Docker container format can be executed on any machine

that can run Docker containers. This is true even if the application’s dependencies are not present on the

machine because all dependencies are packaged in the container itself. For more information, visit the

Docker website.

https://www.docker.com/

5 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

Figure 1) VMs versus containers.

2.3 Kubernetes

Kubernetes is an open-source, distributed, container orchestration platform that was originally designed

by Google and is now maintained by the Cloud Native Computing Foundation (CNCF). Kubernetes

enables the automation of deployment, management, and scaling functions for containerized applications.

In recent years, Kubernetes has emerged as the dominant container orchestration platform. Although

other container packaging formats and run times are supported, Kubernetes is most often used as an

orchestration system for Docker containers. For more information, visit the Kubernetes website.

2.4 NetApp Trident

Trident is an open source storage orchestrator developed and maintained by NetApp that greatly

simplifies the creation, management, and consumption of persistent storage for Kubernetes workloads.

Trident, itself a Kubernetes-native application, runs directly within a Kubernetes cluster. With Trident,

Kubernetes users (developers, data scientists, Kubernetes administrators, and so on) can create,

manage, and interact with persistent storage volumes in the standard Kubernetes format that they are

already familiar with. At the same time, they can take advantage of NetApp advanced data management

capabilities and a data fabric that is powered by NetApp technology. Trident abstracts away the

complexities of persistent storage and makes it simple to consume. For more information, visit the Trident

website.

2.5 NVIDIA DeepOps

DeepOps is an open source project from NVIDIA that, by using Ansible, automates the deployment of

GPU server clusters according to best practices. DeepOps is modular and can be used for various

deployment tasks. For this document and the validation exercise that it describes, DeepOps is used to

deploy a Kubernetes cluster that consists of GPU server worker nodes. For more information, visit the

DeepOps website.

2.6 Kubeflow

Kubeflow is an open source AI and ML toolkit for Kubernetes that was originally developed by Google.

The Kubeflow project seeks to make deployments of AI/ML workflows on Kubernetes simple, portable,

and scalable. Kubeflow abstracts away the intricacies of Kubernetes, allowing data scientists to focus on

what they know best―data science. See Figure 2 for a visualization. Kubeflow has been gaining

Physical Infrastructure Physical Infrastructure

Host Operating System

Hypervisor

Host Operating System

Guest Operating System Guest Operating System

Dependencies

Application A

Dependencies

Application B

Container Runtime

Dependencies

Application A

Dependencies

Application B

Virtual Machines (VMs) Containers

https://kubernetes.io/
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
https://github.com/NVIDIA/deepops

6 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

significant traction as enterprise IT departments have increasingly standardized on Kubernetes. For more

information, visit the Kubeflow website.

Kubeflow Pipelines

Kubeflow Pipelines are a key component of Kubeflow. Kubeflow Pipelines are a platform and standard for

defining and deploying portable and scalable AI and ML workflows. For more information, see the official

Kubeflow documentation.

Jupyter Notebook Server

A Jupyter Notebook Server is an open source web application that allows data scientists to create wiki-

like documents called Jupyter Notebooks that contain live code as well as descriptive test. Jupyter

Notebooks are widely used in the AI/ML community as a means of documenting, storing, and sharing AI

and ML projects. Kubeflow simplifies the provisioning and deployment of Jupyter Notebook Servers on

Kubernetes. For more information on Jupyter Notebooks, visit the Jupyter website. For more information

about Jupyter Notebooks within the context of Kubeflow, see the official Kubeflow documentation.

Figure 2) Kubeflow visualization.

2.7 NetApp ONTAP 9

NetApp ONTAP 9 is the latest generation of storage management software from NetApp that enables

businesses like yours to modernize infrastructure and to transition to a cloud-ready data center. With

industry-leading data management capabilities, ONTAP enables you to manage and protect your data

with a single set of tools regardless of where that data resides. You can also move data freely to

wherever you need it: the edge, the core, or the cloud. ONTAP 9 includes numerous features that simplify

data management, accelerate and protect your critical data, and future-proof your infrastructure across

hybrid cloud architectures.

Simplify Data Management

Data management is crucial for your enterprise IT operations so that you can use appropriate resources

for your applications and datasets. ONTAP includes the following features to streamline and simplify your

operations and reduce your total cost of operation:

K
u

b
e

rn
e

te
s
 A

b
s
tra

c
te

d
 A

w
a

y
Persistent Storage

Kubernetes

GPU Nodes

AI/ML Workloads

http://www.kubeflow.org/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
https://www.kubeflow.org/docs/components/pipelines/pipelines/
http://www.jupyter.org/
https://www.kubeflow.org/docs/components/jupyter/

7 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space
inside storage blocks, and deduplication significantly increases effective capacity.

• Minimum, maximum, and adaptive quality of service (QoS). Granular QoS controls help maintain
performance levels for critical applications in highly shared environments.

• ONTAP FabricPool. This feature provides automatic tiering of cold data to public and private cloud
storage options, including Amazon Web Services (AWS), Azure, and NetApp StorageGRID® object-
based storage.

Accelerate and Protect Data

ONTAP delivers superior levels of performance and data protection and extends these capabilities with

the following features:

• High performance and low latency. ONTAP offers the highest possible throughput at the lowest
possible latency.

• NetApp ONTAP FlexGroup technology. A FlexGroup volume is a high-performance data container
that can scale linearly to up to 20PB and 400 billion files, providing a single namespace that simplifies
data management.

• Data protection. ONTAP provides built-in data protection capabilities with common management
across all platforms.

• NetApp Volume Encryption. ONTAP offers native volume-level encryption with both onboard and
external key management support.

Future-Proof Infrastructure

ONTAP 9 helps meet your demanding and constantly changing business needs:

• Seamless scaling and nondisruptive operations. ONTAP supports the nondisruptive addition of
capacity to existing controllers and to scale-out clusters. You can upgrade to the latest technologies,
such as NVMe and 32Gb FC, without costly data migrations or outages.

• Cloud connection. ONTAP is one of the most cloud-connected storage management software, with
options for software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud
Volumes Service) in all public clouds.

• Integration with emerging applications. By using the same infrastructure that supports existing
enterprise apps, ONTAP offers enterprise-grade data services for next-generation platforms and
applications such as OpenStack, Hadoop, and MongoDB.

2.8 NetApp ONTAP FlexGroup Volumes

A training dataset can be a collection of potentially billions of files. Files can include text, audio, video,

and other forms of unstructured data that must be stored and processed to be read in parallel. The

storage system must store large numbers of small files and must read those files in parallel for sequential

and random I/O.

A FlexGroup volume (Figure 3) is a single namespace that comprises multiple constituent member

volumes. From a storage administrator viewpoint, a FlexGroup volume is managed and acts like a

NetApp FlexVol® volume. Files in a FlexGroup volume are allocated to individual member volumes and

are not striped across volumes or nodes. They enable the following capabilities:

• FlexGroup volumes provide multiple petabytes of capacity and predictable low latency for high-
metadata workloads.

• They support up to 400 billion files in the same namespace.

• They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and
constituent FlexVol volumes.

8 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

Figure 3) NetApp FlexGroup volumes.

3 Validation Environment

All configuration and validation procedures that are outlined in this document were performed on the

NetApp ONTAP AI converged infrastructure solution. For more details on the ONTAP AI architecture, see

NVA-1121. For this exercise, two bare-metal NVIDIA DGX-1 servers, each featuring eight NVIDIA GPUs,

were used as Kubernetes worker nodes. A NetApp AFF A800 all-flash storage system provided a single

persistent storage namespace across nodes, and two Cisco Nexus 3232C switches were used to provide

network connectivity. Three VMs that ran on a separate physical server outside of the ONTAP AI pod

were used as Kubernetes master nodes. See Table 1 for infrastructure details. See Table 2 for software

version details.

Table 1) Infrastructure details.

Component Quantity Details Operating System

Deployment jump host 1 VM Ubuntu 18.04.2 LTS

Kubernetes master nodes 3 VM Ubuntu 18.04.2 LTS

Kubernetes worker nodes 2 NVIDIA DGX-1 (bare-metal) NVIDIA DGX OS 4.0.5

(based on Ubuntu 18.04.2 LTS)

Storage 1 NetApp AFF A800 NetApp ONTAP 9.5 P1

Network connectivity 2 Cisco Nexus 3232C Cisco NX-OS 7.0(3)I6(1)

Table 2) Software version details.

Component Version

NVIDIA DeepOps Pulled from GitHub repository
(https://github.com/NVIDIA/deepops) on August 30, 2019

NVIDIA DGX OS 4.0.5 (based on Ubuntu 18.04.2 LTS)

Ubuntu 18.04.2 LTS

Docker 18.09.5-ce

Kubernetes 1.14.3

https://www.netapp.com/us/media/nva-1121-design.pdf
https://github.com/NVIDIA/deepops

9 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

Component Version

NetApp ONTAP 9.5 P1

NetApp Trident 19.07

Cisco NX-OS 7.0(3)I6(1)

4 Kubernetes Environment Configuration and Example Operations

This section describes the tasks that you must complete to configure a Kubernetes and Trident

environment for scalable AI in the validation environment that is described in Section 3.

An NVIDIA DGX-1 server and a NetApp AFF A800 system were used for this validation exercise.

However, the tasks that are outlined in this section should apply to any environment that contains a

NetApp ONTAP appliance or instance. Examples include a NetApp AFF storage appliance, a NetApp

ONTAP Select software-defined storage instance, or a NetApp Cloud Volumes ONTAP instance running

in the cloud. The NetApp instance can be paired with servers or with instances that feature NVIDIA

GPUs, including white-box servers that feature NVIDIA GPUs or cloud-compute instances that feature

NVIDIA GPUs.

4.1 Prerequisites

Before you perform the configuration exercises that are outlined in this section, we assume that you have

already performed the following tasks:

1. You have already configured the ONTAP appliance or instance and GPU servers or instances
(Kubernetes worker nodes) according to their respective standard deployment instructions.

Note: For the validation exercise that is described in this document, the NetApp AFF A800 storage
appliance and NVIDIA DGX-1 servers have been configured according to the ONTAP AI
converged infrastructure solution guidelines. See NVA-1121 for ONTAP AI deployment
details.

2. You have installed a supported operating system on all Kubernetes master and worker nodes and on
the deployment jump host. As of the time of writing, NVIDIA DeepOps supports the following Linux
distributions:

− NVIDIA DGX OS 4

− Ubuntu 18.04 LTS

− CentOS 7

Note: For this validation exercise, NVIDIA DGX OS 4.0.5 was installed on the Kubernetes worker
nodes according to the ONTAP AI converged infrastructure solution guidelines (see NVA-
1121). Ubuntu 18.04.2 LTS was installed on the Kubernetes master nodes and deployment
jump host.

4.2 Use NVIDIA DeepOps to Install and Configure Kubernetes

To deploy and configure your Kubernetes cluster with NVIDIA DeepOps, perform the following tasks on

the deployment jump host:

1. Clone the NVIDIA DeepOps GitHub repository.

$ git clone https://github.com/NVIDIA/deepops

Cloning into 'deepops'...

remote: Enumerating objects: 9, done.

remote: Counting objects: 100% (9/9), done.

remote: Compressing objects: 100% (9/9), done.

remote: Total 6048 (delta 3), reused 1 (delta 0), pack-reused 6039

https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-design.pdf
https://www.netapp.com/us/media/nva-1121-design.pdf
https://github.com/NVIDIA/deepops

10 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

Receiving objects: 100% (6048/6048), 7.36 MiB | 21.83 MiB/s, done.

Resolving deltas: 100% (3498/3498), done.

$ cd ./deepops

2. Deploy Kubernetes in your cluster by following the instructions on the Kubernetes Deployment Guide
page on the NVIDIA DeepOps GitHub site.

Note: For the DeepOps Kubernetes deployment to work, the same user must exist on all
Kubernetes master and worker nodes. Additionally, NetApp recommends that you set up
passwordless Secure Shell (SSH) access to all Kubernetes nodes from the deployment jump
host before you perform the deployment.

If the deployment fails, change the value of kubectl_localhost to false in

deepops/config/group_vars/k8s-cluster.yml and repeat step 2. The Copy kubectl binary

to ansible host task, which executes only when the value of kubectl_localhost is true, relies

on the fetch Ansible module, which has known memory usage issues. These memory usage issues can

sometimes cause the task to fail. If the task fails because of a memory issue, then the remainder of the

deployment operation does not complete successfully.

If the deployment completes successfully after you have changed the value of kubectl_localhost

to false, then you must manually copy the kubectl binary from a Kubernetes master node to the

deployment jump host. You can find the location of the kubectl binary on a specific master node by
executing the command which kubectl directly on that node.

4.3 Install and Configure Trident

To install and configure NetApp Trident in your Kubernetes cluster, perform the following tasks on the

deployment jump host:

1. Deploy Trident for Kubernetes in your cluster by following the deployment instructions in the Trident
documentation.

2. Create a FlexGroup-enabled Trident back end for each data LIF (logical network interface that
provides data access) that you want to use on your ONTAP system. The example commands that
follow show the creation of two FlexGroup-enabled Trident back ends for two different data LIFs that
are associated with the same ONTAP storage virtual machine (SVM). For more information about
back ends, see the Trident documentation.

Due to NFS protocol limitations, a single NFS mount can provide only 1.5GBps to 2GBps of
bandwidth. If you need more bandwidth for a job, Trident enables you to add multiple NFS mounts
(mounting the same NFS volume multiple times) quickly and easily when you create a Kubernetes
pod. For maximum performance, these multiple mounts should be distributed across different data
LIFs. You must create a Trident back end for each data LIF that you want to use for these mounts.
This example assumes that future AI and ML jobs use two mounts; therefore, it shows the creation of
two Trident back ends that are distributed across two different data LIFs.

The example commands that follow show the creation of two Trident back ends that use the ontap-

nas-flexgroup storage driver. ONTAP supports two main data volume types: FlexVol and

FlexGroup. FlexVol volumes are size-limited (as of this writing, the maximum size depends on the
specific deployment). FlexGroup volumes, on the other hand, can scale linearly to up to 20PB and
400 billion files, providing a single namespace that greatly simplifies data management. Therefore,
FlexGroup volumes are optimal for AI and ML workloads that rely on large amounts of data.

If you are working with a small amount of data and want to use FlexVol volumes instead of FlexGroup
volumes, you can create Trident back ends that use the ontap-nas storage driver instead of the

ontap-nas-flexgroup storage driver.

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface1.json

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "backendName": "ontap-ai-flexgroups-iface1",

 "managementLIF": "10.61.218.100",

https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md
https://github.com/NVIDIA/deepops/blob/master/docs/kubernetes-cluster.md
https://netapp-trident.readthedocs.io/
https://netapp-trident.readthedocs.io/

11 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-iface1.json -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

$ cat << EOF > ./trident-backend-ontap-ai-flexgroups-iface2.json

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "backendName": "ontap-ai-flexgroups-iface2",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.12.12",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexgroups-iface2.json -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

$ tridentctl get backend -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd |

online | 0 |

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

3. Optional: Create one or more FlexVol-enabled Trident back ends. If you use FlexGroup volumes for
training dataset storage, you might want to use FlexVol volumes for storing results, output, debug
information, and so on. If you want to use FlexVol volumes, you must create one or more FlexVol-
enabled Trident back ends. The example commands that follow show the creation of a single FlexVol-
enabled Trident back end that uses a single data LIF.

$ cat << EOF > ./trident-backend-ontap-ai-flexvols.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap-ai-flexvols",

 "managementLIF": "10.61.218.100",

 "dataLIF": "192.168.11.11",

 "svm": "ontapai_nfs",

 "username": "admin",

 "password": "ontapai"

12 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

}

EOF

$ tridentctl create backend -f ./trident-backend-ontap-ai-flexvols.json -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-52a69657fabe |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

$ tridentctl get backend -n trident

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| NAME | STORAGE DRIVER | UUID | STATE

| VOLUMES |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

| ontap-ai-flexvols | ontap-nas | 52bdb3b1-13a5-4513-a9c1-52a69657fabe |

online | 0 |

| ontap-ai-flexgroups-iface1 | ontap-nas-flexgroup | b74cbddb-e0b8-40b7-b263-b6da6dec0bdd |

online | 0 |

| ontap-ai-flexgroups-iface2 | ontap-nas-flexgroup | 61814d48-c770-436b-9cb4-cf7ee661274d |

online | 0 |

+----------------------------+---------------------+--------------------------------------+------

--+---------+

4.4 Create Kubernetes StorageClasses

To administer ONTAP volumes by using Kubernetes, you must create Kubernetes StorageClasses. To

create the StorageClasses that you need, perform the following tasks on the deployment jump host:

1. Create a StorageClass that corresponds to each FlexGroup-enabled Trident back end that you
created in section 4.3, step 2. These granular StorageClasses enable you to add NFS mounts that
correspond to specific LIFs (the LIFs that you specified when you created the Trident back ends) as a
particular back end that is specified in the StorageClass spec file. The example commands that follow
show the creation of two StorageClasses that correspond to the two example back ends that were
created in section 4.3, step 2. The highlighted text shows where the Trident back end is specified in
the StorageClass spec file. For more information about StorageClasses, see the official Kubernetes
documentation.

Note: So that a persistent volume isn’t deleted when the corresponding PersistentVolumeClaim
(PVC) is deleted, the following example uses a reclaimPolicy value of Retain. For more
information about the reclaimPolicy field, see the official Kubernetes documentation.

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface1.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexgroups-retain-iface1

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas-flexgroup"

 storagePools: "ontap-ai-flexgroups-iface1:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-iface1.yaml

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface1 created

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexgroups-retain-iface2

provisioner: netapp.io/trident

parameters:

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

13 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

 backendType: "ontap-nas-flexgroup"

 storagePools: "ontap-ai-flexgroups-iface2:.*"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain-iface2.yaml

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain-iface2 created

$ kubectl get storageclass

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain-iface1 netapp.io/trident 0m

ontap-ai-flexgroups-retain-iface2 netapp.io/trident 0m

2. Optional: Create a StorageClass that corresponds to the FlexVol-enabled Trident back end that you
created in section 4.3, step 3. The example commands that follow show the creation of a single
StorageClass for FlexVol volumes.

Note: In the following example, a particular back end is not specified in the StorageClass spec file
because only one FlexVol-enabled Trident back end was created in section 4.3, step 3. When
you use Kubernetes to administer volumes that use this StorageClass, Trident attempts to
use any available back end that uses the ontap-nas driver.

$ cat << EOF > ./storage-class-ontap-ai-flexvols-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexvols-retain

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexvols-retain.yaml

storageclass.storage.k8s.io/ontap-ai-flexvols-retain created

$ kubectl get storageclass

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain-iface1 netapp.io/trident 1m

ontap-ai-flexgroups-retain-iface2 netapp.io/trident 1m

ontap-ai-flexvols-retain netapp.io/trident 0m

3. Optional: Create a generic StorageClass for FlexGroup volumes. The following example commands
show the creation of a single generic StorageClass for FlexGroup volumes. Note that a particular
back end is not specified in the StorageClass spec file. Therefore, when you use Kubernetes to
administer volumes that use this StorageClass, Trident attempts to use any available back end that
uses the ontap-nas-flexgroup driver.

$ cat << EOF > ./storage-class-ontap-ai-flexgroups-retain.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-ai-flexgroups-retain

provisioner: netapp.io/trident

parameters:

 backendType: "ontap-nas-flexgroup"

reclaimPolicy: Retain

EOF

$ kubectl create -f ./storage-class-ontap-ai-flexgroups-retain.yaml

storageclass.storage.k8s.io/ontap-ai-flexgroups-retain created

$ kubectl get storageclass

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain netapp.io/trident 0m

ontap-ai-flexgroups-retain-iface1 netapp.io/trident 2m

ontap-ai-flexgroups-retain-iface2 netapp.io/trident 2m

ontap-ai-flexvols-retain netapp.io/trident 1m

14 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

4.5 Import and Create Data Volumes

This exercise assumes that a FlexGroup volume that contains data to be used by AI and ML jobs already

exists. To import this volume into your Kubernetes cluster so that you can interact with it in a Kubernetes-

native format, perform the following tasks on the deployment jump host:

1. Use the Trident volume import functionality to create Kubernetes PersistentVolumeClaims (PVCs) for
your existing FlexGroup volume that contains data to be used by AI and ML jobs. Create one PVC for
each FlexGroup-enabled Trident back end that you created in section 4.3, step 2. This step enables
you to mount the same data volume (your existing FlexGroup volume) multiple times across different
LIFs, as described in section 4.3, step 2. The example commands that follow show the creation of two
PVCs, one corresponding to each back end, for an existing volume named pb_fg_all. For more

information about PersistentVolumeClaims, see the official Kubernetes documentation. For more
information about the volume import functionality, see the Trident documentation.

Note: An accessModes value of ReadOnlyMany is specified in the example PVC spec files. This
value means that multiple pods can mount these PVCs in read-only mode at the same time.
For more information about the accessMode field, see the official Kubernetes
documentation.

Note: The back-end names that are specified in the following example import commands are
highlighted for reference. These names should correspond to the back ends that you create
in section 4.3, step 2.

Note: The StorageClass names that are specified in the following example PVC spec files are
highlighted for reference. These names should correspond to the StorageClasses that you
create in section 4.4, step 1.

$ cat << EOF > ./pvc-import-pb_fg_all-iface1.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all-iface1

 namespace: default

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain-iface1

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-import-pb_fg_all-

iface1.yaml -n trident

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+--------------------------------+--------+-----------------------------------+----------+-------

-----------------------------------+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-iface1 | file |

b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true |

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+

$ cat << EOF > ./pvc-import-pb_fg_all-iface2.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all-iface2

 namespace: default

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain-iface2

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface2 pb_fg_all -f ./pvc-import-pb_fg_all-

iface2.yaml -n trident

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://netapp-trident.readthedocs.io/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

15 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+--------------------------------+--------+-----------------------------------+----------+-------

-----------------------------------+--------+---------+

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-iface2 | file |

61814d48-c770-436b-9cb4-cf7ee661274d | online | true |

+--------------------------------+--------+-----------------------------------+----------+-------

-------------------------------------+--------+---------+

$ tridentctl get volume -n trident

+----------------------------------+---------+-----------------------------------+----------+----

----------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+----------------------------------+---------+-----------------------------------+----------+----

----------------------------------+--------+---------+

| default-pb-fg-all-iface1-7d9f1 | 10 TiB | ontap-ai-flexgroups-retain-iface1 | file |

b74cbddb-e0b8-40b7-b263-b6da6dec0bdd | online | true |

| default-pb-fg-all-iface2-85aee | 10 TiB | ontap-ai-flexgroups-retain-iface2 | file |

61814d48-c770-436b-9cb4-cf7ee661274d | online | true |

+----------------------------------+---------+-----------------------------------+----------+----

----------------------------------+--------+---------+

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1 10995116277760 ROX

ontap-ai-flexgroups-retain-iface1 25h

pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee 10995116277760 ROX

ontap-ai-flexgroups-retain-iface2 25h

2. Optional: Use Kubernetes and Trident to provision a new FlexVol volume to store results, output,
debug information, and so on, by using the StorageClass that you created in section 4.4, step 2. The
following example commands show the provisioning of a single new FlexVol volume to store
TensorFlow results.

Note: An accessModes value of ReadWriteMany is specified in the following example PVC spec
file. This value means that multiple pods can mount this PVC in read/write mode at the same
time. For more information about the accessMode field, see the official Kubernetes
documentation.

$ cat << EOF > ./pvc-tensorflow-results.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: tensorflow-results

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-ai-flexvols-retain

EOF

$ kubectl create -f ./pvc-tensorflow-results.yaml

persistentvolumeclaim/tensorflow-results created

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

pb-fg-all-iface1 Bound default-pb-fg-all-iface1-7d9f1 10995116277760

ROX ontap-ai-flexgroups-retain-iface1 26h

pb-fg-all-iface2 Bound default-pb-fg-all-iface2-85aee 10995116277760

ROX ontap-ai-flexgroups-retain-iface2 26h

tensorflow-results Bound default-tensorflow-results-2fd60 1073741824

RWX ontap-ai-flexvols-retain 25h

4.6 Execute a Single-Node AI Workload

To execute a single-node AI and ML job in your Kubernetes cluster by taking advantage of data that is

stored on an ONTAP volume, perform the following tasks on the deployment jump host. With Trident, you

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

16 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

can quickly and easily make a data volume, potentially containing petabytes of data, that is available to a

Kubernetes workload. To make such a data volume accessible from within a Kubernetes pod, simply

specify a PVC, such as one of the PVCs that you created in section 4.5, in the pod specification. This

step is a Kubernetes-native operation; no NetApp or ONTAP expertise is required.

Note: This section assumes that you have already containerized (in the Docker container format) the
specific AI and ML workload that you are attempting to execute in your Kubernetes cluster.

1. Create a Kubernetes job for your containerized AI and ML workload.

The following example commands show the execution of a TensorFlow benchmark job that uses the
ImageNet dataset. For more information about the ImageNet dataset, see the ImageNet website. This
example job requests eight GPUs and therefore can run on a single GPU worker node that features
eight or more GPUs. Additionally, to provide the required amount of storage bandwidth, the volume
that contains the needed training data (the volume that was imported in section 4.5, step 1) is
mounted twice within the pod that this job creates. See the highlighted lines in the following job
specification.

The results volume that was created in section 4.5, step 2, is also mounted in the pod. These
volumes are referenced in the job specification by using the names of the PVCs that were created in
section 4.5. For more information about Kubernetes jobs, see the official Kubernetes documentation.

See section 4.3, step 2, for details about why you might have to mount the same data volume multiple
times. The number of mounts that you need depends on the amount of bandwidth that the specific job
requires.

This example job could be submitted in a cluster for which a worker node featuring eight or more
GPUs is not present or is currently occupied with another workload. If so, then the job remains in a
pending state until such a worker node becomes available.

An emptyDir volume with a medium value of Memory is mounted to /dev/shm in the pod that this

example job creates. The default size of the /dev/shm virtual volume that is automatically created by

the Docker container run time can sometimes be insufficient for TensorFlow’s needs. Mounting an
emptyDir volume as in the following example provides a sufficiently large /dev/shm virtual volume.

For more information about emptyDir volumes, see the official Kubernetes documentation.

The single container that is specified in this example job spec is given a securityContext >

privileged value of true. This value means that the container effectively has root access on the

host. This annotation is used in this case because the specific workload that is being executed
requires root access. Specifically, a clear cache operation that the workload performs requires root
access. Whether or not this privileged: true annotation is necessary depends on the

requirements of the specific workload that you are executing.

$ cat << EOF > ./netapp-tensorflow-single-imagenet.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-tensorflow-single-imagenet

spec:

 backoffLimit: 5

 template:

 spec:

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

http://www.image-net.org/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

17 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--dgx_version=dgx1", "--num_devices=8"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-single-imagenet.yaml

job.batch/netapp-tensorflow-single-imagenet created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 0/1 24s 24s

2. Confirm that the job that you created in step 1 is running correctly. The following example command
confirms that a single pod was created for the job, as specified in the job spec, and that this pod is
currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-single-imagenet-m7x92 1/1 Running 0 3m

10.233.68.61 10.61.218.154 <none>

3. Confirm that the job that you created in step 1 completes successfully. The following example
commands confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 1/1 5m42s 10m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed 0 11m

$ kubectl logs netapp-tensorflow-single-imagenet-m7x92

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c

at line 702

[netapp-tensorflow-single-imagenet-m7x92:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c

at line 711

Total images/sec = 6530.59125

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 1 -H localhost:1 bash -c 'sync; echo 1 > /proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 8 -H localhost:8 -bind-to none -map-by slot -x NCCL_DEBUG=INFO -x

LD_LIBRARY_PATH -x PATH python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --

model=resnet50 --batch_size=256 --device=gpu --force_gpu_compatible=True --num_intra_threads=1 --

num_inter_threads=48 --variable_update=horovod --batch_group_size=20 --num_batches=500 --

nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True --use_tf_layers=False --

data_name=imagenet --use_datasets=True --data_dir=/mnt/mount_0/dataset/imagenet --

datasets_parallel_interleave_cycle_length=10 --datasets_sloppy_parallel_interleave=False --

num_mounts=2 --mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4 --horovod_device=gpu >

/tmp/20190814_105450_tensorflow_horovod_rdma_resnet50_gpu_8_256_b500_imagenet_nodistort_fp16_r10_

m2_nockpt.txt 2>&1

4. Optional: Clean up job artifacts. The following example commands show the deletion of the job
object that was created in step 1.

18 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

Note: When you delete the job object, Kubernetes automatically deletes any associated pods.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-single-imagenet 1/1 5m42s 10m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-single-imagenet-m7x92 0/1 Completed 0 11m

$ kubectl delete job netapp-tensorflow-single-imagenet

job.batch "netapp-tensorflow-single-imagenet" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

4.7 Execute a Synchronous Distributed AI Workload

To execute a synchronous multinode AI and ML job in your Kubernetes cluster, perform the following

tasks on the deployment jump host. This process enables you to take advantage of data that is stored on

an ONTAP volume and to use more GPUs than a single worker node can provide. See Figure 4 for a

visualization.

Note: Synchronous distributed jobs can help increase performance and training accuracy compared
with asynchronous distributed jobs. A discussion of the pros and cons of synchronous jobs versus
asynchronous jobs is outside the scope of this document.

Figure 4) Synchronous distributed AI job.

1. Create a Kubernetes deployment for a worker that participates in the execution of the synchronous
multinode job.

The following example commands show the creation of one worker that participates in the
synchronous distributed execution of the same TensorFlow benchmark job that was executed on a
single node in section 4.6. In this specific example, only a single worker is deployed because the job
is executed across two worker nodes. This example worker deployment requests eight GPUs and
thus can run on a single GPU worker node that features eight or more GPUs. If your GPU worker
nodes feature more than eight GPUs, to maximize performance, you might want to increase this
number to be equal to the number of GPUs that your worker nodes feature. For more information
about Kubernetes deployments, see the official Kubernetes documentation.

A Kubernetes deployment is created in this example because this specific containerized worker would
never complete on its own. Therefore, it doesn’t make sense to deploy it by using the Kubernetes job
construct. If your worker is designed or written to complete on its own, then it might make sense to
use the job construct to deploy your worker.

The pod that is specified in this example deployment specification is given a hostNetwork value of

true. This value means that the pod uses the host worker node’s networking stack instead of the

virtual networking stack that Kubernetes usually creates for each pod. This annotation is used in this

TensorFlow
Worker

TensorFlow
Master

Kubernetes (k8s) Cluster

Data

Master Node GPU Node 1 GPU Node 2

Kube API

data volume

Data

Trident Trident

Data Data

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

19 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

case because the specific workload relies on Open MPI, NCCL, and Horovod to execute the workload
in a synchronous distributed manner. Therefore, it requires access to the host networking stack. A
discussion about Open MPI, NCCL, and Horovod is outside the scope of this document. Whether or
not this hostNetwork: true annotation is necessary depends on the requirements of the specific

workload that you are executing. For more information about the hostNetwork field, see the official

Kubernetes documentation.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-worker.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: netapp-tensorflow-multi-imagenet-worker

spec:

 replicas: 1

 selector:

 matchLabels:

 app: netapp-tensorflow-multi-imagenet-worker

 template:

 metadata:

 labels:

 app: netapp-tensorflow-multi-imagenet-worker

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["bash", "/netapp/scripts/start-slave-multi.sh", "22122"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-worker.yaml

deployment.apps/netapp-tensorflow-multi-imagenet-worker created

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1 1 4s

2. Confirm that the worker deployment that you created in step 1 launched successfully. The following
example commands confirm that a single worker pod was created for the deployment, as indicated in
the deployment specification, and that this pod is currently running on one of the GPU worker nodes.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE

IP NODE NOMINATED NODE

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#host-namespaces

20 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1 Running 0 60s

10.61.218.154 10.61.218.154 <none>

$ kubectl logs netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725

22122

3. Create a Kubernetes job for a master that kicks off, participates in, and tracks the execution of the
synchronous multinode job. The following example commands create one master that kicks off,
participates in, and tracks the synchronous distributed execution of the same TensorFlow benchmark
job that was executed on a single node in section 4.6. This example master job requests eight GPUs
and thus can run on a single GPU worker node that features eight or more GPUs. If your GPU worker
nodes feature more than eight GPUs, to maximize performance, you might want to increase this
number to be equal to the number of GPUs that your worker nodes feature.

Note: The master pod that is specified in this example job specification is given a hostNetwork
value of true, just as the worker pod was given a hostNetwork value of true in step 1.
See step 1 for details about why this value is necessary.

$ cat << EOF > ./netapp-tensorflow-multi-imagenet-master.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: netapp-tensorflow-multi-imagenet-master

spec:

 backoffLimit: 5

 template:

 spec:

 hostNetwork: true

 volumes:

 - name: dshm

 emptyDir:

 medium: Memory

 - name: testdata-iface1

 persistentVolumeClaim:

 claimName: pb-fg-all-iface1

 - name: testdata-iface2

 persistentVolumeClaim:

 claimName: pb-fg-all-iface2

 - name: results

 persistentVolumeClaim:

 claimName: tensorflow-results

 containers:

 - name: netapp-tensorflow-py2

 image: netapp/tensorflow-py2:19.03.0

 command: ["python", "/netapp/scripts/run.py", "--

dataset_dir=/mnt/mount_0/dataset/imagenet", "--port=22122", "--num_devices=16", "--

dgx_version=dgx1", "--nodes=10.61.218.152,10.61.218.154"]

 resources:

 limits:

 nvidia.com/gpu: 8

 volumeMounts:

 - mountPath: /dev/shm

 name: dshm

 - mountPath: /mnt/mount_0

 name: testdata-iface1

 - mountPath: /mnt/mount_1

 name: testdata-iface2

 - mountPath: /tmp

 name: results

 securityContext:

 privileged: true

 restartPolicy: Never

EOF

$ kubectl create -f ./netapp-tensorflow-multi-imagenet-master.yaml

job.batch/netapp-tensorflow-multi-imagenet-master created

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 0/1 25s 25s

21 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

4. Confirm that the master job that you created in step 3 is running correctly. The following example
command confirms that a single master pod was created for the job, as indicated in the job
specification, and that this pod is currently running on one of the GPU worker nodes. You should also
see that the worker pod that you originally saw in step 2 is still running and that the master and
worker pods are running on different nodes.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE

IP NODE NOMINATED NODE

netapp-tensorflow-multi-imagenet-master-ppwwj 1/1 Running 0 45s

10.61.218.152 10.61.218.152 <none>

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1 Running 0 26m

10.61.218.154 10.61.218.154 <none>

5. Confirm that the master job that you created in step 3 completes successfully. The following example
commands confirm that the job completed successfully.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 9m18s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 9m38s

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1 Running 0 35m

$ kubectl logs netapp-tensorflow-multi-imagenet-master-ppwwj

[10.61.218.152:00008] WARNING: local probe returned unhandled shell:unknown assuming bash

rm: cannot remove '/lib': Is a directory

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 702

[10.61.218.154:00033] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 711

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 702

[10.61.218.152:00008] PMIX ERROR: NO-PERMISSIONS in file gds_dstore.c at line 711

Total images/sec = 12881.33875

================ Clean Cache !!! ==================

mpirun -allow-run-as-root -np 2 -H 10.61.218.152:1,10.61.218.154:1 -mca pml ob1 -mca btl ^openib

-mca btl_tcp_if_include enp1s0f0 -mca plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" bash -c

'sync; echo 1 > /proc/sys/vm/drop_caches'

===

mpirun -allow-run-as-root -np 16 -H 10.61.218.152:8,10.61.218.154:8 -bind-to none -map-by slot -x

NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x PATH -mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include

enp1s0f0 -x NCCL_IB_HCA=mlx5 -x NCCL_NET_GDR_READ=1 -x NCCL_IB_SL=3 -x NCCL_IB_GID_INDEX=3 -x

NCCL_SOCKET_IFNAME=enp5s0.3091,enp12s0.3092,enp132s0.3093,enp139s0.3094 -x NCCL_IB_CUDA_SUPPORT=1

-mca orte_base_help_aggregate 0 -mca plm_rsh_agent ssh -mca plm_rsh_args "-p 22122" python

/netapp/tensorflow/benchmarks_190205/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --

model=resnet50 --batch_size=256 --device=gpu --force_gpu_compatible=True --num_intra_threads=1 --

num_inter_threads=48 --variable_update=horovod --batch_group_size=20 --num_batches=500 --

nodistortions --num_gpus=1 --data_format=NCHW --use_fp16=True --use_tf_layers=False --

data_name=imagenet --use_datasets=True --data_dir=/mnt/mount_0/dataset/imagenet --

datasets_parallel_interleave_cycle_length=10 --datasets_sloppy_parallel_interleave=False --

num_mounts=2 --mount_prefix=/mnt/mount_%d --datasets_prefetch_buffer_size=2000 --

datasets_use_prefetch=True --datasets_num_private_threads=4 --horovod_device=gpu >

/tmp/20190814_161609_tensorflow_horovod_rdma_resnet50_gpu_16_256_b500_imagenet_nodistort_fp16_r10

_m2_nockpt.txt 2>&1

6. Delete the worker deployment when you no longer need it. The following example commands show
the deletion of the worker deployment object that was created in step 1.

Note: When you delete the worker deployment object, Kubernetes automatically deletes any
associated worker pods.

$ kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

netapp-tensorflow-multi-imagenet-worker 1 1 1 1 43m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 17m

netapp-tensorflow-multi-imagenet-worker-654fc7f486-v6725 1/1 Running 0 43m

$ kubectl delete deployment netapp-tensorflow-multi-imagenet-worker

deployment.extensions "netapp-tensorflow-multi-imagenet-worker" deleted

$ kubectl get deployments

22 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

No resources found.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 18m

7. Optional: Clean up the master job artifacts. The following example commands show the deletion of
the master job object that was created in step 3.

Note: When you delete the master job object, Kubernetes automatically deletes any associated
master pods.

$ kubectl get jobs

NAME COMPLETIONS DURATION AGE

netapp-tensorflow-multi-imagenet-master 1/1 5m50s 19m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

netapp-tensorflow-multi-imagenet-master-ppwwj 0/1 Completed 0 19m

$ kubectl delete job netapp-tensorflow-multi-imagenet-master

job.batch "netapp-tensorflow-multi-imagenet-master" deleted

$ kubectl get jobs

No resources found.

$ kubectl get pods

No resources found.

4.8 Enable Volume Snapshot Feature

At the time of writing, the volume snapshot feature within Kubernetes is turned off by default. If you want

to create volume snapshots using standard Kubernetes tools and/or APIs, then you must enable the

feature by completing the following tasks:

1. Enable the volume snapshot feature gate within the Kubelet config file on each of your Kubernetes
nodes (all master and worker nodes). If your nodes are running Ubuntu, this file should be located at
/etc/default/kubelet. If your nodes are running RHEL or CentOS, this file should be located at

/etc/sysconfig/kubelet. In the following example, there is no existing Kubelet config file, so

one is added as follows:

$ sudo -i

$ cat << EOF > /etc/default/kubelet

KUBELET_EXTRA_ARGS=--feature-

gates=VolumeSnapshotDataSource=true,CSIDriverRegistry=true,CSINodeInfo=true

EOF

$ systemctl restart kubelet

2. Enable the volume snapshot feature gate within the kube-apiserver config file on each of your

Kubernetes master nodes. This file should be located at /etc/kubernetes/manifests/kube-

apiserver.yaml. In the following example, the highlighted text is added to the file.

$ vi /etc/kubernetes/manifests/kube-apiserver.yaml

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 component: kube-apiserver

 tier: control-plane

 name: kube-apiserver

 namespace: kube-system

spec:

 containers:

 - command:

 - kube-apiserver

 - --advertise-address=10.61.218.131

 - --allow-privileged=true

 - --apiserver-count=3

 - --authorization-mode=Node,RBAC

 - --bind-address=0.0.0.0

 - --client-ca-file=/etc/kubernetes/ssl/ca.crt

23 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

 - --enable-admission-plugins=NodeRestriction

 - --enable-bootstrap-token-auth=true

 - --endpoint-reconciler-type=lease

 - --etcd-cafile=/etc/ssl/etcd/ssl/ca.pem

 - --etcd-certfile=/etc/ssl/etcd/ssl/node-mgmt01.pem

 - --etcd-keyfile=/etc/ssl/etcd/ssl/node-mgmt01-key.pem

 - --etcd-

servers=https://10.61.218.131:2379,https://10.61.218.132:2379,https://10.61.218.133:2379

 - --insecure-port=0

 - --kubelet-client-certificate=/etc/kubernetes/ssl/apiserver-kubelet-client.crt

 - --kubelet-client-key=/etc/kubernetes/ssl/apiserver-kubelet-client.key

 - --kubelet-preferred-address-types=InternalDNS,InternalIP,Hostname,ExternalDNS,ExternalIP

 - --proxy-client-cert-file=/etc/kubernetes/ssl/front-proxy-client.crt

 - --proxy-client-key-file=/etc/kubernetes/ssl/front-proxy-client.key

 - --requestheader-allowed-names=front-proxy-client

 - --requestheader-client-ca-file=/etc/kubernetes/ssl/front-proxy-ca.crt

 - --requestheader-extra-headers-prefix=X-Remote-Extra-

 - --requestheader-group-headers=X-Remote-Group

 - --requestheader-username-headers=X-Remote-User

 - --runtime-config=

 - --secure-port=6443

 - --service-account-key-file=/etc/kubernetes/ssl/sa.pub

 - --service-cluster-ip-range=10.233.0.0/18

 - --service-node-port-range=30000-32767

 - --storage-backend=etcd3

 - --tls-cert-file=/etc/kubernetes/ssl/apiserver.crt

 - --tls-private-key-file=/etc/kubernetes/ssl/apiserver.key

 - --feature-gates=VolumeSnapshotDataSource=true,CSIDriverRegistry=true,CSINodeInfo=true

 image: gcr.io/google-containers/kube-apiserver:v1.14.3

 imagePullPolicy: IfNotPresent

 livenessProbe:

 failureThreshold: 8

 httpGet:

 host: 10.61.218.131

 path: /healthz

 port: 6443

 scheme: HTTPS

 initialDelaySeconds: 15

 timeoutSeconds: 15

 name: kube-apiserver

 resources:

 requests:

 cpu: 250m

 volumeMounts:

 - mountPath: /etc/ssl/certs

 name: ca-certs

 readOnly: true

 - mountPath: /etc/ca-certificates

 name: etc-ca-certificates

 readOnly: true

 - mountPath: /etc/ssl/etcd/ssl

 name: etcd-certs-0

 readOnly: true

 - mountPath: /etc/kubernetes/ssl

 name: k8s-certs

 readOnly: true

 - mountPath: /usr/local/share/ca-certificates

 name: usr-local-share-ca-certificates

 readOnly: true

 - mountPath: /usr/share/ca-certificates

 name: usr-share-ca-certificates

 readOnly: true

 hostNetwork: true

 priorityClassName: system-cluster-critical

 volumes:

 - hostPath:

 path: /etc/ssl/certs

 type: DirectoryOrCreate

 name: ca-certs

 - hostPath:

 path: /etc/ca-certificates

24 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

 type: DirectoryOrCreate

 name: etc-ca-certificates

 - hostPath:

 path: /etc/ssl/etcd/ssl

 type: DirectoryOrCreate

 name: etcd-certs-0

 - hostPath:

 path: /etc/kubernetes/ssl

 type: DirectoryOrCreate

 name: k8s-certs

 - hostPath:

 path: /usr/local/share/ca-certificates

 type: DirectoryOrCreate

 name: usr-local-share-ca-certificates

 - hostPath:

 path: /usr/share/ca-certificates

 type: ""

 name: usr-share-ca-certificates

status: {}

3. Enable the volume snapshot feature gate within the kube-controller-manager config file on

each of your Kubernetes master nodes. This file should be located at
/etc/kubernetes/manifests/kube-controller-manager.yaml. In the following example,

the highlighted text is added to the file:

$ vi /etc/kubernetes/manifests/kube-controller-manager.yaml

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 component: kube-controller-manager

 tier: control-plane

 name: kube-controller-manager

 namespace: kube-system

spec:

 containers:

 - command:

 - kube-controller-manager

 - --allocate-node-cidrs=true

 - --authentication-kubeconfig=/etc/kubernetes/controller-manager.conf

 - --authorization-kubeconfig=/etc/kubernetes/controller-manager.conf

 - --bind-address=0.0.0.0

 - --client-ca-file=/etc/kubernetes/ssl/ca.crt

 - --cluster-cidr=10.233.64.0/18

 - --cluster-signing-cert-file=/etc/kubernetes/ssl/ca.crt

 - --cluster-signing-key-file=/etc/kubernetes/ssl/ca.key

 - --configure-cloud-routes=false

 - --controllers=*,bootstrapsigner,tokencleaner

 - --kubeconfig=/etc/kubernetes/controller-manager.conf

 - --leader-elect=true

 - --node-cidr-mask-size=24

 - --node-monitor-grace-period=40s

 - --node-monitor-period=5s

 - --pod-eviction-timeout=5m0s

 - --requestheader-client-ca-file=/etc/kubernetes/ssl/front-proxy-ca.crt

 - --root-ca-file=/etc/kubernetes/ssl/ca.crt

 - --service-account-private-key-file=/etc/kubernetes/ssl/sa.key

 - --use-service-account-credentials=true

 - --feature-gates=VolumeSnapshotDataSource=true,CSIDriverRegistry=true,CSINodeInfo=true

 image: gcr.io/google-containers/kube-controller-manager:v1.14.3

 imagePullPolicy: IfNotPresent

 livenessProbe:

 failureThreshold: 8

 httpGet:

 host: 127.0.0.1

 path: /healthz

 port: 10252

 scheme: HTTP

 initialDelaySeconds: 15

25 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

 timeoutSeconds: 15

 name: kube-controller-manager

 resources:

 requests:

 cpu: 200m

 volumeMounts:

 - mountPath: /etc/ssl/certs

 name: ca-certs

 readOnly: true

 - mountPath: /etc/ca-certificates

 name: etc-ca-certificates

 readOnly: true

 - mountPath: /usr/libexec/kubernetes/kubelet-plugins/volume/exec

 name: flexvolume-dir

 - mountPath: /etc/kubernetes/ssl

 name: k8s-certs

 readOnly: true

 - mountPath: /etc/kubernetes/controller-manager.conf

 name: kubeconfig

 readOnly: true

 - mountPath: /usr/local/share/ca-certificates

 name: usr-local-share-ca-certificates

 readOnly: true

 - mountPath: /usr/share/ca-certificates

 name: usr-share-ca-certificates

 readOnly: true

 hostNetwork: true

 priorityClassName: system-cluster-critical

 volumes:

 - hostPath:

 path: /etc/ssl/certs

 type: DirectoryOrCreate

 name: ca-certs

 - hostPath:

 path: /etc/ca-certificates

 type: DirectoryOrCreate

 name: etc-ca-certificates

 - hostPath:

 path: /usr/libexec/kubernetes/kubelet-plugins/volume/exec

 type: DirectoryOrCreate

 name: flexvolume-dir

 - hostPath:

 path: /etc/kubernetes/ssl

 type: DirectoryOrCreate

 name: k8s-certs

 - hostPath:

 path: /etc/kubernetes/controller-manager.conf

 type: FileOrCreate

 name: kubeconfig

 - hostPath:

 path: /usr/local/share/ca-certificates

 type: DirectoryOrCreate

 name: usr-local-share-ca-certificates

 - hostPath:

 path: /usr/share/ca-certificates

 type: DirectoryOrCreate

 name: usr-share-ca-certificates

status: {}

4. Enable the volume snapshot feature gate within the kube-scheduler config file on each of your

Kubernetes master nodes. This file should be located at /etc/kubernetes/manifests/kube-

scheduler.yaml. In the following example, the highlighted text is added to the file.

$ vi /etc/kubernetes/manifests/kube-scheduler.yaml

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 component: kube-scheduler

26 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

 tier: control-plane

 name: kube-scheduler

 namespace: kube-system

spec:

 containers:

 - command:

 - kube-scheduler

 - --bind-address=0.0.0.0

 - --kubeconfig=/etc/kubernetes/scheduler.conf

 - --leader-elect=true

 - --feature-gates=VolumeSnapshotDataSource=true,CSIDriverRegistry=true,CSINodeInfo=true

 image: gcr.io/google-containers/kube-scheduler:v1.14.3

 imagePullPolicy: IfNotPresent

 livenessProbe:

 failureThreshold: 8

 httpGet:

 host: 127.0.0.1

 path: /healthz

 port: 10251

 scheme: HTTP

 initialDelaySeconds: 15

 timeoutSeconds: 15

 name: kube-scheduler

 resources:

 requests:

 cpu: 100m

 volumeMounts:

 - mountPath: /etc/kubernetes/scheduler.conf

 name: kubeconfig

 readOnly: true

 hostNetwork: true

 priorityClassName: system-cluster-critical

 volumes:

 - hostPath:

 path: /etc/kubernetes/scheduler.conf

 type: FileOrCreate

 name: kubeconfig

status: {}

4.9 Create a Volume Snapshot

To create a snapshot of a Trident-controlled volume from within your Kubernetes environment, perform

the following tasks on the deployment jump host. This operation takes advantage of NetApp Snapshot™

technology but is undertaken using standard Kubernetes tooling; no NetApp or NetApp ONTAP expertise

is required.

1. Create a volume snapshot class for Trident. Before creating a snapshot of a Trident-controlled
volume, you must set up a volume snapshot class. The example commands that follow show the
creation of a volume snapshot class named csi-snapclass.

$ cat << EOF > ./snapshot-class.yaml

apiVersion: snapshot.storage.k8s.io/v1alpha1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

snapshotter: csi.trident.netapp.io

EOF

$ kubectl create -f ./snapshot-class.yaml

volumesnapshotclass.snapshot.storage.k8s.io/csi-snapclass created

$ kubectl get volumesnapshotclass

NAME AGE

csi-snapclass 1m

2. Use standard Kubernetes tooling to create a snapshot of a FlexVol volume. Note that, at the time of
writing, Trident does not support snapshots for FlexGroup volumes. The example commands that
follow show the creation of a snapshot for the FlexVol volume that was created in section 4.5, step 2.

$ cat << EOF > ./snap-tensorflow-results.yaml

27 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

apiVersion: snapshot.storage.k8s.io/v1alpha1

kind: VolumeSnapshot

metadata:

 name: tensorflow-results-snap1

spec:

 snapshotClassName: csi-snapclass

 source:

 name: tensorflow-results

 kind: PersistentVolumeClaim

EOF

$ kubectl create -f ./snap-tensorflow-results.yaml

volumesnapshot.snapshot.storage.k8s.io/tensorflow-results-snap1 created

$ kubectl get volumesnapshot

NAME AGE

tensorflow-results-snap1 15s

$ kubectl describe volumesnapshot tensorflow-results-snap1

Name: tensorflow-results-snap1

Namespace: default

Labels: <none>

Annotations: <none>

API Version: snapshot.storage.k8s.io/v1alpha1

Kind: VolumeSnapshot

Metadata:

 Creation Timestamp: 2019-09-13T18:52:40Z

 Finalizers:

 snapshot.storage.kubernetes.io/volumesnapshot-protection

 Generation: 3

 Resource Version: 2927664

 Self Link:

/apis/snapshot.storage.k8s.io/v1alpha1/namespaces/default/volumesnapshots/tensorflow-results-

snap1

 UID: a9a28907-d657-11e9-a043-00505681a82d

Spec:

 Snapshot Class Name: csi-snapclass

 Snapshot Content Name: snapcontent-a9a28907-d657-11e9-a043-00505681a82d

 Source:

 API Group: <nil>

 Kind: PersistentVolumeClaim

 Name: tensorflow-results

Status:

 Creation Time: 2019-09-13T18:52:41Z

 Ready To Use: true

 Restore Size: 1Gi

Events: <none>

4.10 Provision a New Volume from a Snapshot

To provision a new volume that is a clone of a snapshot that was created within your Kubernetes

environment, perform the following tasks on the deployment jump host. This operation takes advantage of

NetApp FlexClone technology but is undertaken using standard Kubernetes tooling; no NetApp or NetApp

ONTAP expertise is required.

1. Use standard Kubernetes tooling to provision a new volume that is a clone of a snapshot. The
example commands that follow show the creation of a new volume that is a clone of the snapshot that
was created in section 4.9, step 2.

$ cat << EOF > ./pvc-from-tensorflow-results-snap1.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-tensorflow-results-snap1

spec:

 accessModes:

 - ReadWriteMany

 storageClassName: ontap-ai-flexvols-retain

 resources:

 requests:

 storage: 1Gi

 dataSource:

28 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

 name: tensorflow-results-snap1

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

$ kubectl create -f ./pvc-from-tensorflow-results-snap1.yaml

persistentvolumeclaim/pvc-from-tensorflow-results-snap1 created

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

pvc-from-tensorflow-results-snap1 Bound pvc-998a4762-d8b9-11e9-a043-00505681a82d 1Gi

RWX ontap-ai-flexvols-retain 5s

tensorflow-results Bound pvc-2c4d45e9-d4a0-11e9-9b9d-00505681a82d 1Gi

RWX ontap-ai-flexvols-retain 5d5h

5 Kubeflow Configuration and Example Operations

This section describes the tasks that you must complete to deploy and configure Kubeflow within the

Kubernetes cluster that was provisioned in section 4 in the validation environment described in section 3.

An NVIDIA DGX-1 server and a NetApp AFF A800 system were used for this validation exercise.

However, the tasks that are outlined in this section should apply to any environment that contains a

NetApp ONTAP appliance or instance. Examples include a NetApp AFF storage appliance, a NetApp

ONTAP Select software-defined storage instance, or a NetApp Cloud Volumes ONTAP instance running

in the cloud. The NetApp instance can be paired with servers or with instances that feature NVIDIA

GPUs, including white-box servers that feature NVIDIA GPUs or cloud-compute instances that feature

NVIDIA GPUs.

5.1 Prerequisites

Before you perform the configuration exercises that are outlined in this section, we assume that you have

already configured your Kubernetes cluster by performing the tasks outlined in sections 4.1 through 4.5.

You must also create a default snapshot class within your Kubernetes environment by performing the

task outlined in section 4.9, step 1.

5.2 Set Default Kubernetes StorageClass

Before you deploy Kubeflow, you must designate a default StorageClass within your Kubernetes cluster.

The Kubeflow deployment process attempts to provision new PVCs using the default StorageClass. If no

StorageClass is designated as the default StorageClass, then the deployment fails. To designate a

default StorageClass within your cluster, perform the following task on the deployment jump host:

1. Designate one of your existing StorageClasses as the default StorageClass. The example commands
that follow show the designation of the ontap-ai-flexvols-retain StorageClass that was

created in section 4.4, step 2 as the default StorageClass.

Note: The ontap-nas-flexgroup backendType has a minimum PVC size of 800GB. By default,
Kubeflow attempts to provision PVCs that are smaller than 800GB. Therefore, you should not
designate a StorageClass that utilizes the ontap-nas-flexgroup backendType as the
default StorageClass for the purposes of Kubeflow deployment.

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain csi.trident.netapp.io 3s

$ kubectl patch storageclass ontap-ai-flexvols-retain -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

storageclass.storage.k8s.io/ontap-ai-flexvols-retain patched

$ kubectl get sc

NAME PROVISIONER AGE

ontap-ai-flexgroups-retain csi.trident.netapp.io 25h

ontap-ai-flexgroups-retain-iface1 csi.trident.netapp.io 25h

29 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

ontap-ai-flexgroups-retain-iface2 csi.trident.netapp.io 25h

ontap-ai-flexvols-retain (default) csi.trident.netapp.io 54s

5.3 Deploy Kubeflow

To deploy Kubeflow in your Kubernetes cluster, perform the following tasks on the deployment jump host:

1. Deploy Kubeflow in your cluster by following the Deploy Kubeflow instructions found on the Kubeflow
Deployment with kfctl_k8s_istio page in the official Kubeflow documentation.

If the deployment process fails, NetApp recommends removing all leftover artifacts (instructions
follow) and rerunning the deployment process. Occasionally, Kubernetes takes too long to download
the needed container images, causing the deployment to fail. Rerunning the deployment process
usually fixes the issue.

To remove all leftover artifacts, execute the following commands from within the KFAPP directory

created as a part of the deployment process:

$ kfctl delete all -V

INFO[0000] Downloading /home/cpoc/kubeflow01/app.yaml to /tmp/856959178/app.yaml

filename="v1alpha1/application_types.go:334"

INFO[0000] Writing stripped KfDef to /home/cpoc/kubeflow01/app.yaml

filename="v1alpha1/application_types.go:626"

INFO[0000] Downloading /home/cpoc/kubeflow01/app.yaml to /tmp/631186337/app.yaml

filename="v1alpha1/application_types.go:334"

INFO[0000] Initializing a default restConfig for Kubernetes

filename="kustomize/kustomize.go:249"

INFO[0000] deleting namespace: kubeflow filename="kustomize/kustomize.go:547"

$ kubectl delete ns kubeflow-anonymous

namespace "kubeflow-anonymous" deleted

$ kubectl delete deployment --all -n istio-system

deployment.extensions "grafana" deleted

deployment.extensions "istio-citadel" deleted

deployment.extensions "istio-egressgateway" deleted

deployment.extensions "istio-galley" deleted

deployment.extensions "istio-ingressgateway" deleted

deployment.extensions "istio-pilot" deleted

deployment.extensions "istio-policy" deleted

deployment.extensions "istio-sidecar-injector" deleted

deployment.extensions "istio-telemetry" deleted

deployment.extensions "istio-tracing" deleted

deployment.extensions "kiali" deleted

deployment.extensions "prometheus" deleted

$ kubectl delete svc --all -n istio-system

service "grafana" deleted

service "istio-citadel" deleted

service "istio-egressgateway" deleted

service "istio-galley" deleted

service "istio-ingressgateway" deleted

service "istio-pilot" deleted

service "istio-policy" deleted

service "istio-sidecar-injector" deleted

service "istio-telemetry" deleted

service "jaeger-agent" deleted

service "jaeger-collector" deleted

service "jaeger-query" deleted

service "kiali" deleted

service "prometheus" deleted

service "tracing" deleted

service "zipkin" deleted

$ kubectl delete job --all -n istio-system

job.batch "istio-cleanup-secrets-1.1.6" deleted

job.batch "istio-grafana-post-install-1.1.6" deleted

job.batch "istio-security-post-install-1.1.6" deleted

$ kubectl delete horizontalpodautoscaler --all -n istio-system

horizontalpodautoscaler.autoscaling "istio-egressgateway" deleted

horizontalpodautoscaler.autoscaling "istio-ingressgateway" deleted

horizontalpodautoscaler.autoscaling "istio-pilot" deleted

horizontalpodautoscaler.autoscaling "istio-policy" deleted

https://www.kubeflow.org/docs/started/k8s/kfctl-k8s-istio/
https://www.kubeflow.org/docs/started/k8s/kfctl-k8s-istio/

30 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

horizontalpodautoscaler.autoscaling "istio-telemetry" deleted

$ kubectl get all -n kubeflow

No resources found.

$ kubectl get all -n kubeflow-anonymous

No resources found.

$ kubectl get all -n istio-system

No resources found.

Note: If your default StorageClass uses a reclaimPolicy value of Retain, you might also need
to remove some leftover persistent volumes (PVs). Execute kubectl get pv to get a list of
all PVs within your cluster. Any PV that shows a STATUS of Released was likely created by
the Kubeflow deployment process. To remove a PV, execute kubectl delete pv
<pv_name>.

2. Confirm that all pods deployed within the Kubeflow namespace show a STATUS of Running and

confirm that no components deployed within the namespace are in an error state.

$ kubectl get all -n kubeflow

NAME READY STATUS RESTARTS AGE

pod/admission-webhook-bootstrap-stateful-set-0 1/1 Running 0 95s

pod/admission-webhook-deployment-6b89c84c98-vrtbh 1/1 Running 0 91s

pod/application-controller-stateful-set-0 1/1 Running 0 98s

pod/argo-ui-5dcf5d8b4f-m2wn4 1/1 Running 0 97s

pod/centraldashboard-cf4874ddc-7hcr8 1/1 Running 0 97s

pod/jupyter-web-app-deployment-685b455447-gjhh7 1/1 Running 0 96s

pod/katib-controller-88c97d85c-kgq66 1/1 Running 1 95s

pod/katib-db-8598468fd8-5jw2c 1/1 Running 0 95s

pod/katib-manager-574c8c67f9-wtrf5 1/1 Running 1 95s

pod/katib-manager-rest-778857c989-fjbzn 1/1 Running 0 95s

pod/katib-suggestion-bayesianoptimization-65df4d7455-qthmw 1/1 Running 0 94s

pod/katib-suggestion-grid-56bf69f597-98vwn 1/1 Running 0 94s

pod/katib-suggestion-hyperband-7777b76cb9-9v6dq 1/1 Running 0 93s

pod/katib-suggestion-nasrl-77f6f9458c-2qzxq 1/1 Running 0 93s

pod/katib-suggestion-random-77b88b5c79-l64j9 1/1 Running 0 93s

pod/katib-ui-7587c5b967-nd629 1/1 Running 0 95s

pod/metacontroller-0 1/1 Running 0 96s

pod/metadata-db-5dd459cc-swzkm 1/1 Running 0 94s

pod/metadata-deployment-6cf77db994-69fk7 1/1 Running 3 93s

pod/metadata-deployment-6cf77db994-mpbjt 1/1 Running 3 93s

pod/metadata-deployment-6cf77db994-xg7tz 1/1 Running 3 94s

pod/metadata-ui-78f5b59b56-qb6kr 1/1 Running 0 94s

pod/minio-758b769d67-llvdr 1/1 Running 0 91s

pod/ml-pipeline-5875b9db95-g8t2k 1/1 Running 0 91s

pod/ml-pipeline-persistenceagent-9b69ddd46-bt9r9 1/1 Running 0 90s

pod/ml-pipeline-scheduledworkflow-7b8d756c76-7x56s 1/1 Running 0 90s

pod/ml-pipeline-ui-79ffd9c76-fcwpd 1/1 Running 0 90s

pod/ml-pipeline-viewer-controller-deployment-5fdc87f58-b2t9r 1/1 Running 0 90s

pod/mysql-657f87857d-l5k9z 1/1 Running 0 91s

pod/notebook-controller-deployment-56b4f59bbf-8bvnr 1/1 Running 0 92s

pod/profiles-deployment-6bc745947-mrdkh 2/2 Running 0 90s

pod/pytorch-operator-77c97f4879-hmlrv 1/1 Running 0 92s

pod/seldon-operator-controller-manager-0 1/1 Running 1 91s

pod/spartakus-volunteer-5fdfddb779-l7qkm 1/1 Running 0 92s

pod/tensorboard-6544748d94-nh8b2 1/1 Running 0 92s

pod/tf-job-dashboard-56f79c59dd-6w59t 1/1 Running 0 92s

pod/tf-job-operator-79cbfd6dbc-rb58c 1/1 Running 0 91s

pod/workflow-controller-db644d554-cwrnb 1/1 Running 0 97s

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

service/admission-webhook-service ClusterIP 10.233.51.169 <none>

443/TCP 97s

service/application-controller-service ClusterIP 10.233.4.54 <none>

443/TCP 98s

service/argo-ui NodePort 10.233.47.191 <none>

80:31799/TCP 97s

service/centraldashboard ClusterIP 10.233.8.36 <none>

80/TCP 97s

31 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

service/jupyter-web-app-service ClusterIP 10.233.1.42 <none>

80/TCP 97s

service/katib-controller ClusterIP 10.233.25.226 <none>

443/TCP 96s

service/katib-db ClusterIP 10.233.33.151 <none>

3306/TCP 97s

service/katib-manager ClusterIP 10.233.46.239 <none>

6789/TCP 96s

service/katib-manager-rest ClusterIP 10.233.55.32 <none>

80/TCP 96s

service/katib-suggestion-bayesianoptimization ClusterIP 10.233.49.191 <none>

6789/TCP 95s

service/katib-suggestion-grid ClusterIP 10.233.9.105 <none>

6789/TCP 95s

service/katib-suggestion-hyperband ClusterIP 10.233.22.2 <none>

6789/TCP 95s

service/katib-suggestion-nasrl ClusterIP 10.233.63.73 <none>

6789/TCP 95s

service/katib-suggestion-random ClusterIP 10.233.57.210 <none>

6789/TCP 95s

service/katib-ui ClusterIP 10.233.6.116 <none>

80/TCP 96s

service/metadata-db ClusterIP 10.233.31.2 <none>

3306/TCP 96s

service/metadata-service ClusterIP 10.233.27.104 <none>

8080/TCP 96s

service/metadata-ui ClusterIP 10.233.57.177 <none>

80/TCP 96s

service/minio-service ClusterIP 10.233.44.90 <none>

9000/TCP 94s

service/ml-pipeline ClusterIP 10.233.41.201 <none>

8888/TCP,8887/TCP 94s

service/ml-pipeline-tensorboard-ui ClusterIP 10.233.36.207 <none>

80/TCP 93s

service/ml-pipeline-ui ClusterIP 10.233.61.150 <none>

80/TCP 93s

service/mysql ClusterIP 10.233.55.117 <none>

3306/TCP 94s

service/notebook-controller-service ClusterIP 10.233.10.166 <none>

443/TCP 95s

service/profiles-kfam ClusterIP 10.233.33.79 <none>

8081/TCP 92s

service/pytorch-operator ClusterIP 10.233.37.112 <none>

8443/TCP 95s

service/seldon-operator-controller-manager-service ClusterIP 10.233.30.178 <none>

443/TCP 92s

service/tensorboard ClusterIP 10.233.58.151 <none>

9000/TCP 94s

service/tf-job-dashboard ClusterIP 10.233.4.17 <none>

80/TCP 94s

service/tf-job-operator ClusterIP 10.233.60.32 <none>

8443/TCP 94s

service/webhook-server-service ClusterIP 10.233.32.167 <none>

443/TCP 87s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/admission-webhook-deployment 1/1 1 1 97s

deployment.apps/argo-ui 1/1 1 1 97s

deployment.apps/centraldashboard 1/1 1 1 97s

deployment.apps/jupyter-web-app-deployment 1/1 1 1 97s

deployment.apps/katib-controller 1/1 1 1 96s

deployment.apps/katib-db 1/1 1 1 97s

deployment.apps/katib-manager 1/1 1 1 96s

deployment.apps/katib-manager-rest 1/1 1 1 96s

deployment.apps/katib-suggestion-bayesianoptimization 1/1 1 1 95s

deployment.apps/katib-suggestion-grid 1/1 1 1 95s

deployment.apps/katib-suggestion-hyperband 1/1 1 1 95s

deployment.apps/katib-suggestion-nasrl 1/1 1 1 95s

deployment.apps/katib-suggestion-random 1/1 1 1 95s

deployment.apps/katib-ui 1/1 1 1 96s

32 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

deployment.apps/metadata-db 1/1 1 1 96s

deployment.apps/metadata-deployment 3/3 3 3 96s

deployment.apps/metadata-ui 1/1 1 1 96s

deployment.apps/minio 1/1 1 1 94s

deployment.apps/ml-pipeline 1/1 1 1 94s

deployment.apps/ml-pipeline-persistenceagent 1/1 1 1 93s

deployment.apps/ml-pipeline-scheduledworkflow 1/1 1 1 93s

deployment.apps/ml-pipeline-ui 1/1 1 1 93s

deployment.apps/ml-pipeline-viewer-controller-deployment 1/1 1 1 93s

deployment.apps/mysql 1/1 1 1 94s

deployment.apps/notebook-controller-deployment 1/1 1 1 95s

deployment.apps/profiles-deployment 1/1 1 1 92s

deployment.apps/pytorch-operator 1/1 1 1 95s

deployment.apps/spartakus-volunteer 1/1 1 1 94s

deployment.apps/tensorboard 1/1 1 1 94s

deployment.apps/tf-job-dashboard 1/1 1 1 94s

deployment.apps/tf-job-operator 1/1 1 1 94s

deployment.apps/workflow-controller 1/1 1 1 97s

NAME DESIRED CURRENT READY

AGE

replicaset.apps/admission-webhook-deployment-6b89c84c98 1 1 1

97s

replicaset.apps/argo-ui-5dcf5d8b4f 1 1 1

97s

replicaset.apps/centraldashboard-cf4874ddc 1 1 1

97s

replicaset.apps/jupyter-web-app-deployment-685b455447 1 1 1

97s

replicaset.apps/katib-controller-88c97d85c 1 1 1

96s

replicaset.apps/katib-db-8598468fd8 1 1 1

97s

replicaset.apps/katib-manager-574c8c67f9 1 1 1

96s

replicaset.apps/katib-manager-rest-778857c989 1 1 1

96s

replicaset.apps/katib-suggestion-bayesianoptimization-65df4d7455 1 1 1

95s

replicaset.apps/katib-suggestion-grid-56bf69f597 1 1 1

95s

replicaset.apps/katib-suggestion-hyperband-7777b76cb9 1 1 1

95s

replicaset.apps/katib-suggestion-nasrl-77f6f9458c 1 1 1

95s

replicaset.apps/katib-suggestion-random-77b88b5c79 1 1 1

95s

replicaset.apps/katib-ui-7587c5b967 1 1 1

96s

replicaset.apps/metadata-db-5dd459cc 1 1 1

96s

replicaset.apps/metadata-deployment-6cf77db994 3 3 3

96s

replicaset.apps/metadata-ui-78f5b59b56 1 1 1

96s

replicaset.apps/minio-758b769d67 1 1 1

93s

replicaset.apps/ml-pipeline-5875b9db95 1 1 1

93s

replicaset.apps/ml-pipeline-persistenceagent-9b69ddd46 1 1 1

92s

replicaset.apps/ml-pipeline-scheduledworkflow-7b8d756c76 1 1 1

91s

replicaset.apps/ml-pipeline-ui-79ffd9c76 1 1 1

91s

replicaset.apps/ml-pipeline-viewer-controller-deployment-5fdc87f58 1 1 1

91s

replicaset.apps/mysql-657f87857d 1 1 1

92s

replicaset.apps/notebook-controller-deployment-56b4f59bbf 1 1 1

94s

33 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

replicaset.apps/profiles-deployment-6bc745947 1 1 1

91s

replicaset.apps/pytorch-operator-77c97f4879 1 1 1

94s

replicaset.apps/spartakus-volunteer-5fdfddb779 1 1 1

94s

replicaset.apps/tensorboard-6544748d94 1 1 1

93s

replicaset.apps/tf-job-dashboard-56f79c59dd 1 1 1

93s

replicaset.apps/tf-job-operator-79cbfd6dbc 1 1 1

93s

replicaset.apps/workflow-controller-db644d554 1 1 1

97s

NAME READY AGE

statefulset.apps/admission-webhook-bootstrap-stateful-set 1/1 97s

statefulset.apps/application-controller-stateful-set 1/1 98s

statefulset.apps/metacontroller 1/1 98s

statefulset.apps/seldon-operator-controller-manager 1/1 92s

$ kubectl get pvc -n kubeflow

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

katib-mysql Bound pvc-b07f293e-d028-11e9-9b9d-00505681a82d 10Gi RWO

ontap-ai-flexvols-retain 27m

metadata-mysql Bound pvc-b0f3f032-d028-11e9-9b9d-00505681a82d 10Gi RWO

ontap-ai-flexvols-retain 27m

minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d 20Gi RWO

ontap-ai-flexvols-retain 27m

mysql-pv-claim Bound pvc-b2429afd-d028-11e9-9b9d-00505681a82d 20Gi RWO

ontap-ai-flexvols-retain 27m

3. Retrieve the port number of the port that is mapped to the Kubeflow central dashboard with Istio. You
are looking for the port that is mapped to port 80. In the following example, port 31380 is mapped to
port 80.

$ kubectl get svc istio-ingressgateway -n istio-system

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

istio-ingressgateway NodePort 10.233.44.218 <none>

15020:32276/TCP,80:31380/TCP,443:31390/TCP,31400:31400/TCP,15029:30522/TCP,15030:32354/TCP,15031:

31606/TCP,15032:31452/TCP,15443:30930/TCP 29m

4. Access the Kubeflow central dashboard by navigating to
http://<ip_address_of_any_kubernetes_worker_node>:<port_number_retrieved_i

n_step_3> in your web browser.

34 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

5.4 Provision a Jupyter Notebook Server

To provision a new Jupyter Notebook Server with Kubeflow, perform the following tasks. For more

information about Jupyter Notebooks within the Kubeflow context, see the official Kubeflow

documentation.

1. Use the Trident volume import functionality to import any existing dataset volumes that you want to
mount on your new Jupyter Notebook Server. The volume(s) must be imported in the namespace that
the new Jupyter Notebook Server is created in (see step 4 below).

The example commands that follow show the importing of the same FlexGroup volume containing
data to be used by AI jobs that was imported in section 4.5, step 1. This time, however, the volume is
imported in the kubeflow-anonymous namespace because that is the namespace that the new

Jupyter Notebook Server is created in in step 4. To mount this existing volume on the new Jupyter
Notebook Server using Kubeflow, a PVC must exist for the volume in the same namespace.

$ cat << EOF > ./pvc-import-pb_fg_all-kubeflow-anonymous.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: pb-fg-all

 namespace: kubeflow-anonymous

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexgroups-retain

https://www.kubeflow.org/docs/components/jupyter/
https://www.kubeflow.org/docs/components/jupyter/

35 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

EOF

$ tridentctl import volume ontap-ai-flexgroups-iface1 pb_fg_all -f ./pvc-import-pb_fg_all-

kubeflow-anonymous.yaml -n trident

+--+--------+----------------------------+----------+----

----------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+--+--------+----------------------------+----------+----

----------------------------------+--------+---------+

| pvc-1ed071be-d5a6-11e9-8278-00505681feb6 | 10 TiB | ontap-ai-flexgroups-retain | file |

12f4f8fa-0500-4710-a023-d9b47e86a2ec | online | true |

+--+--------+----------------------------+----------+----

----------------------------------+--------+---------+

$ kubectl get pvc -n kubeflow-anonymous

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

pb-fg-all Bound pvc-1ed071be-d5a6-11e9-8278-00505681feb6 10Ti ROX ontap-

ai-flexgroups-retain 14s

2. From the Kubeflow central dashboard, click Notebook Servers in the main menu to navigate to the
Jupyter Notebook Server administration page.

36 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

3. Click NEW SERVER to provision a new Jupyter Notebook Server.

37 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

4. Give your new server a name, choose the Docker image that you want your server to be based on,
and specify the amount of CPU and RAM to be reserved by your server. If the Namespace field is
blank, use the Select Namespace menu in the page header to choose a namespace. The
Namespace field is then auto-populated with the chosen namespace.

In the following example, the kubeflow-anonymous namespace is chosen. In addition, the default

values for Docker image, CPU, and RAM are accepted.

Note: At the time of writing, Kubeflow only supports the kubeflow-anonymous namespace by
default. Multiuser isolation must be configured to enable multiple namespaces within
Kubeflow. For more information about multiuser isolation, see the official Kubeflow
documentation.

https://www.kubeflow.org/docs/other-guides/multi-user-overview/
https://www.kubeflow.org/docs/other-guides/multi-user-overview/

38 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

5. Specify the workspace volume details. If you choose to create a new volume, then that volume/PVC
is provisioned using the default StorageClass. Because a StorageClass utilizing Trident was
designated as the default StorageClass in section 5.2, the volume/PVC is provisioned with Trident.
This volume is automatically mounted as the default workspace within the Jupyter Notebook Server
container. Any notebooks that a user creates on the server that are not saved to a separate data
volume are automatically saved to this workspace volume. Therefore, the notebooks is persistent
across reboots.

6. Add dataset volumes. The following example specifies the existing dataset volume/PVC that was
imported in step 1 and accepts the default mount point.

39 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

7. Request that the desired number of GPUs be allocated to your notebook server. In the following
example, one GPU is requested.

8. Click Launch to provision your new notebook server.

9. Wait for your notebook server to be fully provisioned. This can take several minutes if you have never
provisioned a server using the Docker image that you specified in step 4. When your server has been
fully provisioned, you see a green check-mark graphic in the Status column on the Jupyter Notebook
Server administration page.

40 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

10. Click Connect to connect to your new server’s web interface.

11. Confirm that the dataset volume that was specified in step 6 is mounted on the server. Note that this
volume is mounted within the default workspace by default. From the perspective of the user, this is
just another folder within the workspace. The user, who is likely a data scientist and not an
infrastructure expert, does not need to possess any storage expertise in order to use this volume.

41 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

12. Open a Terminal and, assuming that a new volume was requested in step 5, execute df -h to

confirm that a new Trident-provisioned persistent volume is mounted as the default workspace.

Note: The default workspace directory is the base directory that you are presented with when you
access the server’s web interface. Therefore, any artifacts that the user creates using the
web interface are stored on this Trident-provisioned persistent volume.

42 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

13. Using the terminal, execute nvidia-smi to confirm that the correct number of GPUs were allocated

to the notebook server. In the following example, one GPU has been allocated to the notebook server
as requested in step 7.

43 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

5.5 Create a Kubeflow Pipeline to Execute an AI Workload

To create and execute a new Kubeflow Pipeline that takes advantage of NetApp persistent storage and

NetApp Snapshot technology, perform the following tasks. For more information about Kubeflow

Pipelines, see the official Kubeflow documentation.

1. Use the Trident volume import functionality to import any existing dataset volumes that you want to
perform operations on within your pipeline. The volume(s) must be imported in the kubeflow

namespace because this is the namespace that pipelines are executed in.

The example commands that follow show the importing of an existing FlexVol volume named
kfpdata. A FlexVol volume is used here as opposed to a FlexGroup volume because the example

pipeline that follows attempts to take a snapshot of this volume using Trident. At the time of writing,
Trident does not support snapshots for FlexGroup volumes.

$ cat << EOF > ./pvc-import-kfpdata-kubeflow.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: kfpdata

 namespace: kubeflow

spec:

 accessModes:

 - ReadOnlyMany

 storageClassName: ontap-ai-flexvols-retain

EOF

$ tridentctl import volume ontap-ai-flexvols kfpdata -f ./pvc-import-kfpdata-kubeflow.yaml -n

trident

+--+--------+--------------------------+----------+------

--------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+--+--------+--------------------------+----------+------

--------------------------------+--------+---------+

| pvc-3c70ad14-d88f-11e9-b5e2-00505681f3d9 | 10 TiB | ontap-ai-flexvols-retain | file |

2942d386-afcf-462e-bf89-1d2aa3376a7b | online | true |

+--+--------+--------------------------+----------+------

--------------------------------+--------+---------+

$ kubectl get pvc -n kubeflow

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

imagenet-benchmark-job-gblgq-kfpresults Bound pvc-a4e32212-d65c-11e9-a043-00505681a82d 1Gi

RWX ontap-ai-flexvols-retain 2d19h

katib-mysql Bound pvc-b07f293e-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 10d

kfpdata Bound pvc-3c70ad14-d88f-11e9-b5e2-00505681f3d9

10Ti ROX ontap-ai-flexvols-retain 8s

metadata-mysql Bound pvc-b0f3f032-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 10d

minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 10d

mysql-pv-claim Bound pvc-b2429afd-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 10d

2. Define your Kubeflow Pipeline in Python using the Kubeflow Pipelines SDK. The example commands
that follow show the creation of a pipeline definition for a pipeline that executes the following steps:

a. Uses Trident to provision a new FlexVol volume. This new volume is used to store training
results.

b. Uses Trident to take a snapshot, using NetApp Snapshot technology, of the dataset volume that
was imported in step 1.

c. Executes the same ImageNet benchmark training job that was executed in section 4.6. This time
however, the dataset volume is only mounted once.

d. Uses Trident to take a snapshot, using NetApp Snapshot technology, of the results volume that
was created in step 2, sub-step a.

https://www.kubeflow.org/docs/components/pipelines/pipelines/

44 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

$ pip3 install kfp

Requirement already satisfied: kfp in /usr/local/lib/python3.7/site-packages (0.1.29)

Requirement already satisfied: PyYAML in /usr/local/lib/python3.7/site-packages (from kfp) (3.13)

Requirement already satisfied: python-dateutil in /usr/local/lib/python3.7/site-packages (from

kfp) (2.8.0)

Requirement already satisfied: google-auth>=1.6.1 in /usr/local/lib/python3.7/site-packages (from

kfp) (1.6.3)

Requirement already satisfied: urllib3<1.25,>=1.15 in /usr/local/lib/python3.7/site-packages

(from kfp) (1.24.1)

Requirement already satisfied: tabulate==0.8.3 in /usr/local/lib/python3.7/site-packages (from

kfp) (0.8.3)

Requirement already satisfied: cloudpickle in /usr/local/lib/python3.7/site-packages (from kfp)

(1.2.2)

Requirement already satisfied: kfp-server-api<=0.1.25,>=0.1.18 in /usr/local/lib/python3.7/site-

packages (from kfp) (0.1.18.3)

Requirement already satisfied: kubernetes<=9.0.0,>=8.0.0 in /usr/local/lib/python3.7/site-

packages (from kfp) (9.0.0)

Requirement already satisfied: argo-models==2.2.1a in /usr/local/lib/python3.7/site-packages

(from kfp) (2.2.1a0)

Requirement already satisfied: Deprecated in /usr/local/lib/python3.7/site-packages (from kfp)

(1.2.6)

Requirement already satisfied: cryptography>=2.4.2 in /usr/local/lib/python3.7/site-packages

(from kfp) (2.5)

Requirement already satisfied: click==7.0 in /usr/local/lib/python3.7/site-packages (from kfp)

(7.0)

Requirement already satisfied: google-cloud-storage>=1.13.0 in /usr/local/lib/python3.7/site-

packages (from kfp) (1.19.0)

Requirement already satisfied: requests-toolbelt>=0.8.0 in /usr/local/lib/python3.7/site-packages

(from kfp) (0.9.1)

Requirement already satisfied: jsonschema>=3.0.1 in /usr/local/lib/python3.7/site-packages (from

kfp) (3.0.2)

Requirement already satisfied: certifi in /usr/local/lib/python3.7/site-packages (from kfp)

(2018.11.29)

Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.7/site-packages (from kfp)

(1.12.0)

Requirement already satisfied: PyJWT>=1.6.4 in /usr/local/lib/python3.7/site-packages (from kfp)

(1.7.1)

Requirement already satisfied: cachetools>=2.0.0 in /usr/local/lib/python3.7/site-packages (from

google-auth>=1.6.1->kfp) (3.1.1)

Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/site-packages

(from google-auth>=1.6.1->kfp) (0.2.6)

Requirement already satisfied: rsa>=3.1.4 in /usr/local/lib/python3.7/site-packages (from google-

auth>=1.6.1->kfp) (4.0)

Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in

/usr/local/lib/python3.7/site-packages (from kubernetes<=9.0.0,>=8.0.0->kfp) (0.56.0)

Requirement already satisfied: requests in /usr/local/lib/python3.7/site-packages (from

kubernetes<=9.0.0,>=8.0.0->kfp) (2.21.0)

Requirement already satisfied: requests-oauthlib in /usr/local/lib/python3.7/site-packages (from

kubernetes<=9.0.0,>=8.0.0->kfp) (1.2.0)

Requirement already satisfied: setuptools>=21.0.0 in /usr/local/lib/python3.7/site-packages (from

kubernetes<=9.0.0,>=8.0.0->kfp) (41.0.1)

Requirement already satisfied: wrapt<2,>=1.10 in

/Users/moglesby/Library/Python/3.7/lib/python/site-packages (from Deprecated->kfp) (1.11.2)

Requirement already satisfied: cffi!=1.11.3,>=1.8 in /usr/local/lib/python3.7/site-packages (from

cryptography>=2.4.2->kfp) (1.11.5)

Requirement already satisfied: asn1crypto>=0.21.0 in /usr/local/lib/python3.7/site-packages (from

cryptography>=2.4.2->kfp) (0.24.0)

Requirement already satisfied: google-cloud-core<2.0dev,>=1.0.3 in /usr/local/lib/python3.7/site-

packages (from google-cloud-storage>=1.13.0->kfp) (1.0.3)

Requirement already satisfied: google-resumable-media>=0.3.1 in /usr/local/lib/python3.7/site-

packages (from google-cloud-storage>=1.13.0->kfp) (0.4.0)

Requirement already satisfied: pyrsistent>=0.14.0 in /usr/local/lib/python3.7/site-packages (from

jsonschema>=3.0.1->kfp) (0.15.4)

Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/site-packages (from

jsonschema>=3.0.1->kfp) (19.1.0)

Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/site-packages

(from pyasn1-modules>=0.2.1->google-auth>=1.6.1->kfp) (0.4.7)

Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.7/site-packages

(from requests->kubernetes<=9.0.0,>=8.0.0->kfp) (3.0.4)

Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.7/site-packages (from

requests->kubernetes<=9.0.0,>=8.0.0->kfp) (2.8)

45 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/site-packages (from

requests-oauthlib->kubernetes<=9.0.0,>=8.0.0->kfp) (3.1.0)

Requirement already satisfied: pycparser in /usr/local/lib/python3.7/site-packages (from

cffi!=1.11.3,>=1.8->cryptography>=2.4.2->kfp) (2.19)

Requirement already satisfied: google-api-core<2.0.0dev,>=1.14.0 in

/usr/local/lib/python3.7/site-packages (from google-cloud-core<2.0dev,>=1.0.3->google-cloud-

storage>=1.13.0->kfp) (1.14.2)

Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in

/usr/local/lib/python3.7/site-packages (from google-api-core<2.0.0dev,>=1.14.0->google-cloud-

core<2.0dev,>=1.0.3->google-cloud-storage>=1.13.0->kfp) (1.6.0)

Requirement already satisfied: protobuf>=3.4.0 in /usr/local/lib/python3.7/site-packages (from

google-api-core<2.0.0dev,>=1.14.0->google-cloud-core<2.0dev,>=1.0.3->google-cloud-

storage>=1.13.0->kfp) (3.9.1)

Requirement already satisfied: pytz in /usr/local/lib/python3.7/site-packages (from google-api-

core<2.0.0dev,>=1.14.0->google-cloud-core<2.0dev,>=1.0.3->google-cloud-storage>=1.13.0->kfp)

(2019.2)

$ cat << EOF > ./imagenet-benchmark-pipeline.py

Kubeflow Pipeline Definition: imagenet-benchmark-pipeline

import kfp.dsl as dsl

import kfp.onprem as onprem

import kubernetes.client.models as models

import datetime

@dsl.pipeline(

 # Define pipeline metadata

 name="ImageNet Benchmark Job",

 description="Demonstrate a full training pipeline"

)

def imagenet_benchmark(

 # Define variables that the user can set in the pipelines UI; set default values

 container_image="netapp/tensorflow-py2:19.03.0",

 dataset_volume_pvc_existing="kfpdata",

 dataset_volume_mountpoint="/mnt/mount_0",

 dataset_dir="/mnt/mount_0/dataset/imagenet/imagenet_train_copies",

 results_volume_pvc="kfpresults",

 results_volume_size="1Gi",

 dgx_version="dgx1"

):

 num_gpu = 8

 # create results volume/pvc with Trident

 results_volume = dsl.VolumeOp(

 name="create_results_vol",

 resource_name=results_volume_pvc,

 size=results_volume_size,

 modes=dsl.VOLUME_MODE_RWM # ReadWriteMany

)

 # Take a snapshot of the dataset volume/pvc

 dataset_snapshot = dsl.VolumeSnapshotOp(

 name="dataset_vol_snapshot",

 resource_name="dataset",

 pvc=dataset_volume_pvc_existing,

 snapshot_class="csi-snapclass"

)

 # Execute ImageNet benchmark training job

 train = dsl.ContainerOp(

 name="train",

 image=container_image,

 command=["python", "/netapp/scripts/run.py",

 "--dataset_dir", dataset_dir,

 "--dgx_version", dgx_version,

 "--num_devices", str(num_gpu),

 "--num_mounts=1"],

 pvolumes={"/tmp": results_volume.volume}

)

 # Mount dataset volume/pvc

 train.apply(

 onprem.mount_pvc(dataset_volume_pvc_existing, 'datavol', dataset_volume_mountpoint)

46 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

)

 # Set security context of pod

 train.set_security_context(security_context = models.V1SecurityContext(privileged=True))

 # Request that GPUs be allocated to pod

 train.set_gpu_limit(num_gpu, 'nvidia')

 # State that training job should be executed after dataset volume snapshot is taken

 train.after(dataset_snapshot)

 # Take a snapshot of the results volume/pvc

 results_snapshot = dsl.VolumeSnapshotOp(

 name="results_vol_snapshot",

 resource_name="results",

 volume=train.pvolumes["/tmp"],

 snapshot_class="csi-snapclass"

)

if __name__ == "__main__":

 import kfp.compiler as compiler

 compiler.Compiler().compile(imagenet_benchmark, __file__ + ".tar.gz")

EOF

$ python3 imagenet-benchmark-pipeline.py

$ ls imagenet-benchmark-pipeline.py.tar.gz

imagenet-benchmark-pipeline.py.tar.gz

3. From the Kubeflow central dashboard, click Pipelines in the main menu to navigate to the Kubeflow
Pipelines administration page.

4. Click Upload Pipeline to upload your pipeline definition.

47 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

5. Choose the.tar.gz archive containing your pipeline definition that you created in step 2, give your

pipeline a name, and click Upload.

6. You should now see your new pipeline in the list of pipelines on the pipeline administration page.
Click your pipeline’s name to view it.

48 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

7. Review your pipeline to confirm that it looks correct.

8. Click Create Experiment to create a new experiment. An experiment is a workspace in which you can
run your pipelines. For more information, see the official Kubeflow documentation.

https://www.kubeflow.org/docs/pipelines/overview/concepts/experiment/

49 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

9. Give your experiment a name and then click Next.

10. You are now presented with a screen from which you can start a pipeline run within your new
experiment. Create a name for the run.

50 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

11. Define parameters for the run, and then click Start. In the following example, the default values are
accepted for all parameters. Note that you defined the default values for the parameters within your
pipeline definition (see step 2).

51 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

12. You are now presented with a screen listing all runs that fall under the specific experiment. Click the
name of the run that you just started to view it.

52 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

13. At this point, the run is likely still in progress.

53 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

14. Confirm that the run completed successfully. When the run is complete, every stage of the pipeline
shows a green check-mark icon.

15. Click the training stage, and then click on Logs to view logs for the training run.

54 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

55 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

16. Confirm that a new results volume was provisioned during the pipeline run (see step 2, sub-step a, for
details).

$ kubectl get pvc -n kubeflow

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

imagenet-benchmark-job-5z9x6-kfpresults Bound pvc-30e882c9-d8b2-11e9-b5e2-00505681f3d9 1Gi

RWX ontap-ai-flexvols-retain 20m

katib-mysql Bound pvc-b07f293e-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 10d

kfpdata Bound pvc-3c70ad14-d88f-11e9-b5e2-00505681f3d9

10Ti ROX ontap-ai-flexvols-retain 4h30m

metadata-mysql Bound pvc-b0f3f032-d028-11e9-9b9d-00505681a82d

10Gi RWO ontap-ai-flexvols-retain 10d

minio-pv-claim Bound pvc-b22727ee-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 10d

mysql-pv-claim Bound pvc-b2429afd-d028-11e9-9b9d-00505681a82d

20Gi RWO ontap-ai-flexvols-retain 10d

17. Confirm that two snapshots were created during the pipeline run (see step 2, sub-steps b and d, for
details).

$ kubectl get volumesnapshot -n kubeflow

NAME AGE

imagenet-benchmark-job-5z9x6-dataset 22m

imagenet-benchmark-job-5z9x6-results 16m

6 Performance Testing

We performed a simple performance comparison as part of this validation exercise. We executed several

standard NetApp benchmarking jobs by using Kubernetes, and we compared the benchmark results with

executions that were performed by using a simple Docker run command. We did not see any noticeable

differences in performance. Therefore, we concluded that the use of Kubernetes to orchestrate

containerized jobs does not adversely affect performance. See Table 3 for the results of our performance

comparison.

Table 3) Performance comparison results.

Benchmark Dataset Docker Run
(images/sec)

Kubernetes
(images/sec)

Single-node TensorFlow Synthetic data 6,667.2475 6,661.93125

Single-node TensorFlow ImageNet 6,570.2025 6,530.59125

Synchronous distributed two-node TensorFlow Synthetic data 13,213.70625 13,218.288125

Synchronous distributed two-node TensorFlow ImageNet 12,941.69125 12,881.33875

7 Conclusion

In today’s digital economy, AI is becoming increasingly critical for business success. As organizations

increase their use of AI, they face two major challenges: data availability and workload scalability.

Kubernetes and Kubeflow make it simple to deploy and scale AI workloads across multiple GPUs and

nodes, and NetApp Trident provides seamless access to persistent data across nodes or regions. With

Trident, you can quickly and easily make data volumes, potentially containing petabytes of data, available

to Kubernetes-based workloads. Additionally, Trident is a Kubernetes-native app; no NetApp or NetApp

ONTAP expertise is required.

56 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

Acknowledgments

• David Arnette, Technical Marketing Engineer, NetApp

• Sung-Han Lin, Performance Analyst, NetApp

• Steve Guhr, Solutions Engineer, NetApp

• Muneer Ahmad, Solutions Architect, NetApp

• Nilesh Bagad, Senior Product Manager, NetApp

• Santosh Rao, Senior Technical Director, NetApp

Where to Find Additional Information

To learn more about the information that is described in this document, see the following resources:

• NVIDIA DGX-1 servers:

− NVIDIA DGX-1 servers
https://www.nvidia.com/en-us/data-center/dgx-1/

− NVIDIA Tesla V100 Tensor Core GPU
https://www.nvidia.com/en-us/data-center/tesla-v100/

− NVIDIA GPU Cloud (NGC)
https://www.nvidia.com/en-us/gpu-cloud/

• NetApp AFF systems:

− AFF datasheet
https://www.netapp.com/us/media/ds-3582.pdf

− NetApp FlashAdvantage for AFF
https://www.netapp.com/us/media/ds-3733.pdf

− ONTAP 9.x documentation
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286

− NetApp FlexGroup technical report
https://www.netapp.com/us/media/tr-4557.pdf

• NetApp persistent storage for containers:

− NetApp Trident

https://netapp.io/persistent-storage-provisioner-for-kubernetes/

• NetApp Interoperability Matrix:

− NetApp Interoperability Matrix Tool
http://support.netapp.com/matrix

• ONTAP AI networking:

− Cisco Nexus 3232C Switches
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html

− Mellanox Spectrum 2000 series switches
http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000

• ML framework and tools:

− DALI

https://github.com/NVIDIA/DALI

− TensorFlow: An Open-Source Machine Learning Framework for Everyone
https://www.tensorflow.org/

− Horovod: Uber’s Open-Source Distributed Deep Learning Framework for TensorFlow
https://eng.uber.com/horovod/

https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/ds-3582.pdf
https://www.netapp.com/us/media/ds-3733.pdf
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286
https://www.netapp.com/us/media/tr-4557.pdf
https://netapp.io/persistent-storage-provisioner-for-kubernetes/
http://support.netapp.com/matrix
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
http://www.mellanox.com/page/products_dyn?product_family=251&mtag=sn2000
https://github.com/NVIDIA/DALI
https://www.tensorflow.org/
https://eng.uber.com/horovod/

57 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

− Enabling GPUs in the Container Runtime Ecosystem
https://devblogs.nvidia.com/gpu-containers-runtime/

− Docker

https://docs.docker.com

− Kubernetes

https://kubernetes.io/docs/home/

− NVIDIA DeepOps

https://github.com/NVIDIA/deepops

− Kubeflow

http://www.kubeflow.org/

− Jupyter Notebook Server

http://www.jupyter.org/

• Dataset and benchmarks:

− ImageNet
http://www.image-net.org/

− COCO
http://cocodataset.org/

− Cityscapes
https://www.cityscapes-dataset.com/

− nuScenes
www.nuscenes.org

− SECOND: Sparsely Embedded Convolutional Detection model
https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf

− TensorFlow benchmarks
https://github.com/tensorflow/benchmarks

Version History

Version Date Document Version History

Version 1.0 September 2019 Initial release.

Version 2.0 September 2019 Added sections on Snapshots/FlexClones (sections 4.8 - 4.10)
and Kubeflow (sections 2.6 and 5.*); added Figure 4; updated
DeepOps troubleshooting instructions (section 4.2, step 2).

https://devblogs.nvidia.com/gpu-containers-runtime/
https://docs.docker.com/
https://kubernetes.io/docs/home/
https://github.com/NVIDIA/deepops
http://www.kubeflow.org/
http://www.jupyter.org/
http://www.image-net.org/
http://cocodataset.org/
https://www.cityscapes-dataset.com/
http://www.nuscenes.org/
https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
https://github.com/tensorflow/benchmarks

58 AI and ML Workloads on Kubernetes with Trident © 2019 NetApp, Inc. All Rights Reserved. NETAPP CONFIDENTIAL

Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact
product and feature versions described in this document are supported for your specific environment. The
NetApp IMT defines the product components and versions that can be used to construct configurations
that are supported by NetApp. Specific results depend on each customer’s installation in accordance with
published specifications.

Copyright Information

Copyright © 2019 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered
by copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical,
including photocopying, recording, taping, or storage in an electronic retrieval system—without prior
written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY
DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice.
NetApp assumes no responsibility or liability arising from the use of products described herein, except as
expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license
under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

Data contained herein pertains to a commercial item (as defined in FAR 2.101) and is proprietary to
NetApp, Inc. The U.S. Government has a non-exclusive, non-transferrable, non-sublicensable, worldwide,
limited irrevocable license to use the Data only in connection with and in support of the U.S. Government
contract under which the Data was delivered. Except as provided herein, the Data may not be used,
disclosed, reproduced, modified, performed, or displayed without the prior written approval of NetApp,
Inc. United States Government license rights for the Department of Defense are limited to those rights
identified in DFARS clause 252.227-7015(b).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of
NetApp, Inc. Other company and product names may be trademarks of their respective owners.

http://mysupport.netapp.com/matrix
http://www.netapp.com/TM

